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Preface
Ten years ago (1992), I wrote my first book called, µC/OS, The Real-Time Kernel. Towards the end of
1998, it was replaced by MicroC/OS-II, The Real-Time Kernel. The word Micro now replaces the Greek
letter µ on the book cover because bookstores didn’t know how to file µC/OS properly. However, for all
intents and purposes, MicroC/OS and µC/OS are synonymous, and, in this book, I mostly use µC/OS-II.
This is the second edition of µC/OS-II but, in a way, the third edition of the µC/OS series.

Meets the Requirements of Safety-Critical Systems
In July of 2000, µC/OS-II was certified in an avionics product by the Federal Aviation Administration
(FAA) for use in commercial aircraft by meeting the demanding requirements of the RTCA DO-178B
standard for software used in avionics equipment. In order to meet the requirements of this standard, it
must be possible to demonstrate through documentation and testing that the software is both robust and
safe. This issue is particularly important for an operating system as it demonstrates that it has the proven
quality to be usable in any application. Every feature, function, and line of code of µC/OS-II has been
examined and tested to demonstrate that it is safe and robust enough to be used in safety-critical systems
where human life is on the line.

What’s New in this Edition?
This book has been completely revised since the first edition of MicroC/OS-II, The Real-Time Kernel. 

More Chapters

The previous edition contained 12 chapters while this edition has 18. I decided to break the old
Chapter 6 (Intertask Communications & Synchronization) into six chapters. I now dedicate a whole
chapter to event control blocks (ECBs), one for semaphores, one for mutual exclusion semaphores,
one for event flags, one for message mailboxes, and finally, one for message queues.

The previous edition contained a port for the Intel 80x86 family of processors, but this port only
handled context switching of integer registers. I added a chapter that describes a port that also saves
and restores floating-point registers, which are common to the 80486 and Pentium processors.
xv
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I also added a chapter that describes the services I use from a PC.

Finally, I added two appendices: Coding Conventions and a µC/OS-II Quick Reference.

Removed Chapters

I decided to remove the chapter on porting µC/OS to µC/OS-II because very few people are still
using µC/OS because µC/OS-II offers so much more.

I also removed the appendix on HPLISTC because most good code editors allow you to neatly print
source listings.

Removed Code Listings

I decided to remove the code listings that were found in Appendices A, B, and C. I have three rea-
sons for removing the listings. First, this edition contains over 150 pages of new material. If I were
to leave the listings in the appendices, this book would exceed 750 pages and would be a monster to
carry around (it’s already big as it is). The second reason is that the code comes on the companion
CD, and it’s better to refer to the code using a computer anyway. Also, the code is already described
in the book, so the appendices were a duplication of the code. Finally, like any piece of software,
µC/OS-II is subject to changes and upgrades. Because of this, the listings in the appendices become
obsolete over time and thus have little value.

Additional Services

The code for µC/OS-II is basically the same as the previous edition, except for the addition of new
services. The previous edition contained the following services:

• Time management 

• Binary and counting semaphores

• Message mailboxes

• Message queues

• Fixed-sized memory block manager

This new edition adds:

• Mutual exclusion semaphores (mutexes)

• Event flags

More Examples

In some of the chapters, I added examples on how you can use the services described. 

New Structure

I rearranged the structure of the book to make it much more usable. I found that the way the code
was described was cumbersome, and I decided to completely redo it. You should notice that when I
reference a specific element in a figure, I use the letter F followed by the figure number. The number
in parenthese following the figure number represents a specific element in the figure to which I am



µC/OS-II Goals xvii
trying to bring your attention. F1.2(3) thus means “please look at the item numbered “3” in Figure
1.2. I used this scheme in the previous edition, but this time I decided to place these reference mark-
ers in the margin instead of burying them in the text. I find that it’s a lot easier to follow the code or
figure using this scheme and I hope you do too.

µC/OS-II Goals
My most important goal is to demystify real-time kernel internals. By understanding how a kernel
works, you are in a better position to determine whether you need a kernel for your own products. Most
of the concepts presented in this book are applicable to a large number of commercial kernels. My next
most important goal is to provide you with a quality product that you can potentially use in your own
products. µC/OS-II is not freeware nor is it open source code. If you use µC/OS-II in a commercial
product, you need to license its use (see Appendix B, “Licensing Policy for µC/OS-II”).

Intended Audience
This book is intended for embedded system programmers, consultants, and students interested in
real-time operating systems. µC/OS-II is a high performance, deterministic, real-time kernel and can be
(and has been) used in commercial embedded products.

Instead of writing your own kernel, you should consider µC/OS-II. You will find, as I did, that writ-
ing a kernel is not as easy as it first looks.

I’m assuming that you know C and have a minimum knowledge of assembly language. You should
also understand microprocessor architectures.

What You Need to Use µC/OS-II
The code supplied with this book assumes that you are using an IBM-PC/AT or compatible (80386 min-
imum) computer running under DOS 4.x or higher. The code was compiled with the Borland C++
v4.51. You should have about 10 MB of free disk space on your hard drive. I actually compiled and exe-
cuted the sample code provided in this book on a 300 MHz Pentium II computer running Microsoft’s
Windows 2000. I have successfully compiled and run the code on Windows 95, 98, and NT-based
machines.

To use µC/OS-II on a different target processor (other than a PC), you need to either port µC/OS-II
to that processor yourself or obtain such a port from the official µC/OS-II Web site at
http://www.uCOS-II.com.. You also need appropriate software development tools, such as an ANSI C
compiler, an assembler, linker/locator, and some way of debugging your application.

The µC/OS Story
Many years ago, I designed a product based on an Intel 80C188 at Dynalco Controls, and I needed a
real-time kernel. I had been using a well-known kernel (I’ll call it kernel A) in my work for a previous
employer, but it was too expensive for the application I was designing. I found a lower-cost kernel
($1,000 at the time) (I’ll call it kernel B) and started the design. I spent about two months trying to get a
couple of very simple tasks to run. I was calling the vendor almost on a daily basis for help to make it
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work. The vendor claimed that kernel B was written in C (the language); however, I had to initialize
every single object using assembly language code. Although the vendor was very patient, I decided that
I had had enough. The product was falling behind schedule, and I really didn’t want to spend my time
debugging this low-cost kernel. It turns out that I was one of the vendor’s first customers, and the kernel
really was not fully tested and debugged.

To get back on track, I decided to go back and use kernel A. The cost was about $5,000 for five
development seats, and I had to pay a per-usage fee of about $200 for each unit that was shipped. This
was a lot of money at the time, but it bought some peace of mind. I got the kernel up and running in
about two days. Three months into the project, one of my engineers discovered what looked like a bug
in the kernel. I sent the code to the vendor, and, sure enough, the bug was confirmed as being in the ker-
nel. The vendor provided a 90-day warranty but that had expired, so, in order to get support, I had to pay
an additional $500 per year for maintenance. I argued with the salesperson for a few months that they
should fix the bug because I was actually doing them a favor. They wouldn’t budge. Finally, I gave in
and bought the maintenance contract, and the vendor fixed the bug six months later. Yes, six months
later! I was furious and, most importantly, late delivering the product. In all, it took close to a year to get
the product to work reliably with kernel A. I must admit, however, that I have had no problems with it
since.

As this was going on, I naively thought that it couldn’t be that difficult to write a kernel. All it needs
to do is save and restore processor registers. That’s when I decided to write my own kernel (part time,
nights and weekends). It took me about a year to get the kernel to work as well, and, in some ways bet-
ter, than kernel A. I didn’t want to start a company and sell it because there were already about 50 ker-
nels out there, so why have another one?

Then I thought of writing a paper for a magazine. First, I went to C User’s Journal (CUJ) because
the kernel was written in C. I had heard CUJ was offering $100 per published page when other maga-
zines were only paying $75 per page. My paper had 70 or so pages, so that would be nice compensation
for all the time I spent working on my kernel. Unfortunately, the article was rejected for two reasons.
First, the article was too long, and the magazine didn’t want to publish a series. Second, they didn’t want
“another kernel article.”

I decided to turn to Embedded Systems Programming (ESP) magazine because my kernel was
designed for embedded systems. I contacted the editor of ESP (Mr. Tyler Sperry) and told him that I had
a kernel I wanted to publish in his magazine. I got the same response from Tyler that I did from CUJ:
“Not another kernel article?” I told him that this kernel was different — it was preemptive, it was com-
parable to many commercial kernels, and the source code could be posted on the ESP BBS (bulletin
board system). I was calling Tyler two or three times a week, basically begging him to publish my arti-
cle. He finally gave in, probably because he was tired of my calls. My article was edited down from 70
pages to about 30 pages and was published in two consecutive months (May and June 1992). The article
was probably the most popular article in 1992. ESP had over 500 downloads of the code from the BBS
in the first month. Tyler might have feared for his life because kernel vendors were upset that he pub-
lished a kernel in his magazine. I guess that these vendors must have recognized the quality and capabil-
ities of µC/OS (called µCOS then). The article was really the first that exposed the internal workings of
a real-time kernel, so some of the secrets were out.

About the time the article came out in ESP, I got a call from Dr. Bernard (Berney) Williams at
CMP Books, CMP Media LLC (publisher of CUJ), six months after the initial contact with CUJ. He
left a message with my wife and told her that he was interested in the article. I called him back and
said, “Don’t you think you are a little bit late with this? The article is being published in ESP.” Berney
said, “No, No, you don’t understand. Because the article is so long, I want to make a book out of it.”
Initially, Berney simply wanted to publish what I had (as is), so the book would only have 80 pages or
so. I told him that if I was going to write a book, I wanted to do it right. I then spent about six months
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adding content to what is now known as the first edition. In all, the book was published at about 250
pages. I changed the name from µCOS to µC/OS because ESP readers had been calling it “mucus,”
which didn’t sound very healthy. Come to think of it, maybe it was a kernel vendor that first came up
with the name. Anyway, µC/OS, The Real-Time Kernel was born. Sales were somewhat slow to start.
Berney and I had projected about 4,000 to 5,000 copies would be sold in the life of the book, but at the
rate it was selling, I thought we’d be lucky if it sold 2,000 copies. Berney insisted that these things
take time to get known, so he continued advertising in CUJ for about a year.

A month or so before the book came out, I went to my first Embedded Systems Conference (ESC) in
Santa Clara, California (September 1992). I met Tyler Sperry for the first time, and I showed him a copy
of the first draft of my book. He very quickly glanced at it and asked if I would like to speak at the next
Embedded Systems Conference in Atlanta. Not knowing any better, I said I would and asked him what I
should talk about. He suggested “Using Small Real-Time Kernels.” On the trip back from California, I
was thinking, “What did I get myself into? I’ve never spoken in front of a bunch of people before. What
if I make a fool of myself? What if what I speak about is common knowledge? People pay good money
to attend this conference.” For the next six months, I prepared my lecture. At the conference, I had more
than 70 attendees. In the first twenty minutes, I must have lost one pound of sweat. After my lecture,
about 15 people or so came up to me to say that they were very pleased with the lecture and liked my
book. I was invited back to the conference but could not attend the one in Santa Clara that year (1993)
because my wife was due to have our second child, Sabrina. I was able to attend the next conference in
Boston (1994), and I have been a regular speaker at ESC ever since. For the past several years, I’ve been
on the conference Advisory Committee. I now do at least three lectures at every conference and each has
attendance between 100 and 300 people. My lectures are almost always ranked among the top 10% at
the conference.

To date, well over 25,000 copies of my µC/OS and µC/OS-II books have been sold around the world.
I have received and answered thousands of e-mails from over 44 countries. I still try to answer every
single one. I believe that if you take the time to write me, I owe you a response. In 1995, µC/OS, The
Real-Time Kernel was translated into Japanese and published in Japan in a magazine called Interface. In
2001, µC/OS-II was translated into Chinese. A Korean translation came out in early 2002. A Japanese
translation of µC/OS-II is in the works and should be available in 2002.

µC/OS and µC/OS-II have been ported to over 40 different processor architectures, and the number
of ports is increasing. You should consult the µC/OS-II Web site at http://www.uCOS-II.com to see if
the processor you intend to use is available.

In 1994, I decided to write a second book: Embedded Systems Building Blocks, Complete and
Ready-to-Use Modules in C (ESBB). A second edition of ESBB was published in 2000. For some rea-
son, ESBB has not been as popular as µC/OS, although it contains a lot of valuable information not
found anywhere else. I always thought that it would be an ideal book for people just starting in the
embedded world.

In 1998, I opened the official µC/OS Web site http://www.uCOS-II.com. I intend this site to con-
tain ports, application notes, links, answers to frequently asked questions (FAQs), upgrades for
µC/OS-II, and more. All I need is time!

In 2001, I started a news group to allow users to share information and their experiences with
µC/OS-II.

Back in 1992, I never imagined that writing an article would change my life as it has. I met a lot of
very interesting people and made a number of good friends in the process.

Thanks for choosing this book, and I hope you enjoy it!
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Intro
Introduction
This book describes the design and implementation of µC/OS-II (pronounced “Micro C O S 2”), which
stands for Micro-Controller Operating System, Version 2.

µC/OS-II is a completely portable, ROMable, scalable, preemptive, real-time, multitasking kernel.
µC/OS-II is written in ANSI C and contains a small portion of assembly language code to adapt it to dif-
ferent processor architectures. To date, µC/OS-II has been ported to over 40 different processor architec-
tures, ranging from 8- to 64-bit CPUs. 

µC/OS-II is based on µC/OS, The Real-Time Kernel that was first published in 1992. Thousands of
people around the world are using µC/OS and µC/OS-II in all kinds of applications, such as cameras,
avionics, high-end audio equipment, medical instruments, musical instruments, engine controls, net-
work adapters, highway telephone call boxes, ATM machines, industrial robots, and more. Numerous
colleges and universities have also used µC/OS and µC/OS-II to teach students about real-time systems.

µC/OS-II is upward compatible with µC/OS v1.11 (the last released version of µC/OS) but provides
many improvements. If you currently have an application that runs with µC/OS, it should run virtually
unchanged with µC/OS-II. All of the services (i.e., function calls) provided by µC/OS have been pre-
served. You may, however, have to change include files and product build files to point to the new filena-
mes.

The companion CD for this book contains all the source code for µC/OS-II and ports for the Intel
80x86 processor running in real mode and for the large model. The code was developed and executed on
a PC running Microsoft Windows 2000 but should work just as well on Windows 95, 98, Me, NT, and
XP. Examples run in a DOS-compatible box under these environments. Development was done using
the Borland International C/C++ compiler v4.51. Although µC/OS-II was developed and tested on a PC,
µC/OS-II was actually targeted for embedded systems and can be ported easily to many different pro-
cessor architectures.

µC/OS-II Features

Source Code As I mentioned previously, the companion CD contains all the source code for µC/OS-II
(about 5,500 lines). I went to a lot of effort to provide you with a high-quality product. You might not
agree with some of the style constructs that I use, but you should agree that the code is both clean and
very consistent. Many commercial real-time kernels are provided in source form. I challenge you to find
any such code that is as neat, consistent, well commented, and well organized as µC/OS-II. Also, I
 xxi



xxii Introduction
believe that simply giving you the source code is not enough. You need to know how the code works and
how the different pieces fit together. This book provides that type of information. The organization of a
real-time kernel is not always apparent when staring at many source files and thousands of lines of code.

Portable Most of µC/OS-II is written in highly portable ANSI C, with target microprocessor-specific
code written in assembly language. Assembly language is kept to a minimum to make µC/OS-II easy to
port to other processors. Like µC/OS, µC/OS-II can be ported to a large number of microprocessors, as
long as the microprocessor provides a stack pointer and the CPU registers can be pushed onto and
popped from the stack. Also, the C compiler should provide either in-line assembly or language exten-
sions that allow you to enable and disable interrupts from C. µC/OS-II can run on most 8-, 16-, 32-, or
even 64-bit microprocessors or microcontrollers and digital signal processors (DSP).

All the ports that currently exist for µC/OS can be converted to µC/OS-II in about an hour. Also,
because µC/OS-II is upward compatible with µC/OS, your µC/OS applications should run on µC/OS-II
with few or no changes. Check for the availability of ports on the µC/OS-II Web site at
www.uCOS-II.com.

ROMable µC/OS-II was designed for embedded applications, which means that if you have the
proper tool chain (i.e., C compiler, assembler, and linker/locator), you can actually embed µC/OS-II as
part of a product.

Scalable I designed µC/OS-II so that you can use only the services you need in your application,
which means that a product can use just a few µC/OS-II services, while another product can benefit
from the full set of features. Scalability allows you to reduce the amount of memory (both RAM and
ROM) needed by µC/OS-II on a per-product basis. Scalability is accomplished with the use of condi-
tional compilation. Simply specify (through #define constants) which features you need for your appli-
cation or product. I did everything I could to reduce both the code and data space required by µC/OS-II.

Preemptive µC/OS-II is a fully preemptive real-time kernel, which means that µC/OS-II always runs
the highest priority task that is ready. Most commercial kernels are preemptive, and µC/OS-II is compa-
rable in performance with many of them.

Multitasking µC/OS-II can manage up to 64 tasks; however, I recommend that you reserve eight of
these tasks for µC/OS-II, leaving your application up to 56 tasks. Each task has a unique priority
assigned to it, which means that µC/OS-II cannot do round-robin scheduling. There are thus 64 priority
levels.

Deterministic Execution times for most of µC/OS-II functions and services are deterministic, which
means that you can always know how much time µC/OS-II will take to execute a function or a service.
Except for OSTimeTick() and some of the event flag services, execution times of µC/OS-II services do
not depend on the number of tasks running in your application.

Task Stacks Each task requires its own stack; however, µC/OS-II allows each task to have a different
stack size, which allows you to reduce the amount of RAM needed in your application. With µC/OS-II’s
stack-checking feature, you can determine exactly how much stack space each task actually requires.

Services µC/OS-II provides a number of system services, such as semaphores, mutual exclusion
semaphores, event flags, message mailboxes, message queues, fixed-sized memory partitions, task man-
agement, time management functions, and more.
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Interrupt Management Interrupts can suspend the execution of a task. If a higher priority task is
awakened as a result of the interrupt, the highest priority task runs as soon as all nested interrupts com-
plete. Interrupts can be nested up to 255 levels deep.

Robust and Reliable µC/OS-II is based on µC/OS, which has been used in hundreds of commercial
applications since 1992. µC/OS-II uses the same core and most of the same functions as µC/OS, yet
offers many more features. Also, in July of 2000, µC/OS-II was certified in an avionics product by the
Federal Aviation Administration (FAA) for use in commercial aircraft by meeting the demanding
requirements of the RTCA DO-178B standard for software used in avionics equipment. In order to meet
the requirements of this standard, it must be possible to demonstrate through documentation and testing
that the software is both robust and safe. This issue is particularly important for an operating system as
it demonstates that it has the proven quality to be usable in any application. Every feature, function, and
line of code of µC/OS-II has been examined and tested to demonstrate that it is safe and robust enough
to be used in safety-critical systems where human life is on the line. 

Figures, Listings, and Tables
You will notice that when I reference a specific element in a figure, I use the letter “F” followed by the
figure number. The number in parenthesis following the figure number represents a specific element in
the figure that I am trying to bring your attention to. F1.2(3) thus means “please look at the item num-
bered “3” in Figure 1.2”.

Chapter Contents
Figure I.1 shows the layout and the flow of this book. I thought this diagram would be useful to under-
stand the relationship between the chapters. Chapter 2 is a standalone chapter and doesn’t depend on
any other chapter. As a minimum, I recommend that you read the Preface, the Introduction, Chapter 1
and Chapter 3. Then with the knowledge you will have gained about µC/OS-II, you ought to be able to
start using µC/OS-II and thus move to Chapters 16 and 17 to understand what features are available. If
you want to further your understanding of µC/OS-II, you can proceed with Chapters 4, 5, and 6. After
you understand Chapter 6, you can either jump to the synchronization or communication services.

Chapter 1, Getting Started with µC/OS-II This chapter is designed to allow you to experiment with
µC/OS-II immediately. In fact, I assume you know little about µC/OS-II and multitasking; concepts are
introduced as needed. This chapter has been completely re-written from the previous edition.

Chapter 2, Real-time Systems Concepts Here, I introduce you to some real-time systems concepts,
such as foreground/background systems, critical sections, resources, multitasking, context switching,
scheduling, reentrancy, task priorities, mutual exclusion, semaphores, intertask communications, inter-
rupts, and more.

Chapter 3, Kernel Structure This chapter introduces you to µC/OS-II and its internal structure. You
will learn about tasks, task states, and task control blocks; how µC/OS-II implements a ready list, task
scheduling, and the idle task; how to determine CPU usage; how µC/OS-II handles interrupts; how to
initialize and start µC/OS-II; and more.
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Figure I.1 Book layout and flow.

Chapter 4, Task Management This chapter describes µC/OS-II services that create a task, delete a
task, check the size of a task’s stack, change a task’s priority, suspend and resume a task, and get infor-
mation about a task.

Chapter 5, Time Management This chapter describes how µC/OS-II can suspend a task’s execution
until some user-specified time expires, how such a task can be resumed, and how to get and set the cur-
rent value of a 32-bit tick counter.

Chapter 6, Event Control Blocks This chapter describes a data structure that is used by most of the
kernel objects to do synchronization and communication. This data structure allows tasks and Interrupt
Service Routines (ISR) to communicate with one another and share resources. This chapter is a prereq-
uisite to Chapters 7 through 11.

Chapter 7, Semaphore Management A semaphore is a kernel object that your tasks needs to acquire
in order to gain exclusive access to shared resources. This chapter describes how semaphores are imple-
mented in µC/OS-II. 
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Chapter 8, Mutual Exclusion Semaphores A mutual exclusion semaphores (mutex) is a binary
semaphore that allows you to gain exclusive access to a resource. The mutex reduces priority inversion
issues by automatically changing a task’s priority if needed. This chapter describes how (mutex) are
implemented in µC/OS-II. Mutexes are new services in this edition. 

Chapter 9, Event Flag Management Event flags are bits for which a task can wait. A task can wait
for one or more of these bits to be set or cleared. This chapter shows how event flags are implemented
and describes the services that are available to your application. Event flags are new services in this edi-
tion.

Chapter 10, Message Mailbox Management A message mailbox allows your tasks to send mes-
sages to one another. This chapter shows how these services are implemented. 

Chapter 11, Message Queue Management A message queue is like a message mailbox, except that
it allows multiple messages to be sent to one or more tasks. This chapter shows how message queues are
implemented. 

Chapter 12, Memory Management This chapter describes the µC/OS-II dynamic memory alloca-
tion feature using fixed-sized memory blocks.

Chapter 13, Porting µC/OS-II This chapter describes in general terms what needs to be done to
adapt µC/OS-II to different processor architectures. This chapter has been completely rewritten from the
previous edition.

Chapter 14, 80x86 Port Real Mode, Large Model with Emulated Floating-Point Support  This
chapter describes how µC/OS-II was ported to the Intel/AMD 80x86 processor architecture running in
real mode and for the large-memory model.

Chapter 15, 80x86 Port Real Mode, Large Model with Hardware Floating-Point Support  This
chapter is an extension of the previous one, except that it shows how you can add the floating-point reg-
isters of the 80486, 5x86, and Pentium processors to the context switch. This chapter is new to this edi-
tion.

Chapter 16, µC/OS-II Reference Manual This chapter describes each of the functions (i.e., ser-
vices) provided by µC/OS-II from an application developer’s standpoint. Each function contains a brief
description, its prototype, the name of the file where the function is found, a description of the function
arguments and the return value, special notes, and examples. Many new services have been added in this
edition (mutexes and event flags), and these have been added in this chapter.

Chapter 17, µC/OS-II Configuration Manual This chapter describes each of the #define constants
used to configure µC/OS-II for your application. Configuring µC/OS-II allows you to use only the ser-
vices required by your application. This gives you the flexibility to reduce the µC/OS-II memory foot-
print (code and data space). This new edition contains more than three times as many configuration
options to allow you to reduce the amount of code and data space needed by µC/OS-II.

Chapter 18, PC Services The examples of Chapter 1 assume the use of a IBM/PC compatible com-
puter. This new chapter shows how I encapsulated some of the services available from a PC. 
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Appendix A, C Coding Conventions This appendix shows the coding conventions that I used in this
book and in my everyday activities.

Appendix B, Licensing Policy for µC/OS-II This appendix describes the licensing policy for distrib-
uting µC/OS-II in source and object form.

Appendix C, µC/OS-II Quick Reference This appendix provides a quick reference to µC/OS-II’s
services.

Appendix D, TO Utility TO is a DOS utility that allows you to navigate between DOS directories
without having to type long CD path commands.

Appendix E, Bibliography This appendix provides a bibliography of reference material that you
might find useful if you are interested in getting further information about embedded real-time systems.

Appendix F, Companion CD This appendix tells you how to install µC/OS-II and describes what’s
on the companion CD.

µC/OS-II Web Site
To provide better support to you, I created the µC/OS-II Web site (http://www.uCOS-II.com). You can
obtain information about

• news on µC/OS and µC/OS-II,

• upgrades,

• bug fixes,

• availability of ports,

• answers to frequently asked questions (FAQs),

• application notes,

• books,

• classes,

• links to other Web sites, and more.
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Chapter 1

Getting Started with µC/OS-II
This chapter provides four examples on how to use µC/OS-II. I decided to include this chapter early in
the book so you could start using µC/OS-II as soon as possible. In fact, I assume you know little about
µC/OS-II and multitasking; concepts are introduced as needed.

The sample code was compiled using the Borland C/C++ compiler v4.51, and options were selected
to generate code for an Intel/AMD 80186 processor (large-memory model). The code was actually run
and tested on a 300MHz Intel Pentium II PC, running in a DOS window using Microsoft Windows
2000. For all intents and purposes, a Pentium can be viewed as a superfast 80186 processor. The Bor-
land C/C++ v4.51 (called the Borland Turbo C++ 4.5) is available from www.Borland.com, and I was
assured by Borland that readers would still be able to purchase this compiler for a number of years to
come.

I chose a PC as my target system for a number of reasons. First and foremost, it’s a lot easier to test
code on a PC than on any other embedded environment (i.e., evaluation board or emulator): there are no
EPROMs or Flash to burn and no downloads to EPROM emulators, or CPU emulators. You simply com-
pile, link, and run. Second, the 80186 object code (real mode, large model) generated using the Borland
C/C++ compiler is compatible with all 80x86 derivative processors from Intel, AMD, and others.

1.00 Installing µC/OS-II
This book includes a companion CD, and you should refer to Appendix F for instruction on how to
install the source of µC/OS-II and executables of the examples on your computer. The installation
assumes that you are installing the software on a Windows 95, 98, Me, NT, 2000, or XP computer.
 1



2 Chapter 1: Getting Started with µC/OS-II 
1.01 Example #1
Example #1 demonstrates basic multitasking capabilities of µC/OS-II. Ten tasks display a number
between 0 and 9 at random locations on the screen. Each task displays only one of the number. In other
words, one task displays 0 at random locations, another task displays 1, and so on.

The code for Example #1 is found in the \SOFTWARE\uCOS-II\EX1_x86L\BC45 directory of the
installation drive (the default is C:). You can open a DOS window (called Command Prompt in
Microsoft Windows 2000) and type

CD \SOFTWARE\uCOS-II\Ex1_x86L\BC45\TEST
The CD command allows you to change directory and, in this case, go to the TEST directory of

Example #1. The TEST directory contains four files: MAKETEST.BAT, TEST.EXE, TEST.LNK, and
TEST.MAK. To execute Example #1, simply type TEST at the command line prompt. The DOS window
runs the TEST.EXE program.

After about one second, you should see the DOS window randomly fill up with numbers between 0
and 9, as shown in Figure 1.1.

Figure 1.1 Example #1 running in a DOS window.

Example #1 consists of 13 tasks, as displayed in the lower left of Figure 1.1. µC/OS-II creates two inter-
nal tasks: the idle task and a task that determines CPU usage. The code in Example #1 creates the other
11 tasks.

The source code for Example #1 is found in TEST.C, in the SOURCE directory. You can get there from
the TEST directory by typing

CD  ..\SOURCE
Portions of TEST.C are shown in Listing 1.1. You can examine the actual code using your favorite code
editor.
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1

Note:  To describe listings and figures, I place a reference in the margin. The reference corre-
sponds to an element of the listing or figure to which I want to bring your attention. For example,
L1.1(1) means: “please refer to Listing 1.1 and locate the item (1).”  This notation also applies to
figures and thus F3.1(2) means: “please look at Figure 3.1 and examine item (2).”

L1.1(1) First, you notice that there is only a single #include statement.  That’s because I like to place
all my header files in a master header file called INCLUDES.H.  Each source file always refer-
ences this single include file, and thus I never need to worry about determining which head-
ers I need; they all get included via INCLUDES.H. You can use your code editor to view the
contents of INCLUDES.H, which is also found in the SOURCE directory.

µC/OS-II is a multitasking kernel and allows you to have up to 63 application tasks. µC/OS-II
decides when to switch from one task to an other, based on information you provide to µC/OS-II. One of
the items you must tell µC/OS-II is the priority of your tasks. Changing between tasks is called a context
switch.

I will return to Listing 1.1 later as needed. Like most C programs, we need a main(), as shown in
Listing 1.2.

Listing 1.1 Example #1, TEST.C. 
#include  "includes.h"                                                        (1)

#define       TASK_STK_SIZE            512                                    (2)

#define       N_TASKS                   10

OS_STK        TaskStk[N_TASKS][TASK_STK_SIZE];                                (3)

OS_STK        TaskStartStk[TASK_STK_SIZE];                                    (4)

char          TaskData[N_TASKS];                                              (5)

OS_EVENT     *RandomSem;                                                      (6)

Listing 1.2 Example #1, TEST.C, main(). 
void  main (void)

{

    PC_DispClrScr(DISP_FGND_WHITE + DISP_BGND_BLACK);                        (1)

    OSInit();                                                                (2)

    PC_DOSSaveReturn();                                                      (3)

    PC_VectSet(uCOS, OSCtxSw);                                               (4)

    RandomSem   = OSSemCreate(1);                                            (5)



4 Chapter 1: Getting Started with µC/OS-II 
L1.2(1) main() starts by clearing the screen to ensure that no characters are left over from the previ-
ous DOS session. The function PC_DispClrScr() is found in a file called PC.C (see Chapter
18, “PC Services” for details).  PC.C contains functions that provide services if you are run-
ning in a DOS environment (or a window under the Microsoft Windows 95, 98, Me, NT,
2000, or XP operating systems).  The PC_ prefix allows you to easily determine the name of
the file from which the function comes; in this case, PC.C.  You should note that I specified
white letters on a black background. Because the screen will be cleared, I simply could have
specified a black background and not specified a foreground. If I did this, and you decided to
return to the DOS prompt, you would not see anything on the screen! It’s always better to
specify a visible foreground just for this reason.

L1.2(2) A requirement of µC/OS-II is that you call OSInit() before you invoke any of its other ser-
vices. OSInit() creates two tasks: an idle task, which executes when no other task is ready to
run, and a statistic task, which computes CPU usage.

L1.2(3) The current DOS environment is saved by calling PC_DOSSaveReturn(), which allows you
to return to DOS as if you had never started µC/OS-II. You can refer to Chapter 18, “PC Ser-
vices” for a description of what PC_DOSSaveReturn() does.

L1.2(4) main() calls PC_VectSet() (see Chapter 18, “PC Services”) to install the µC/OS-II con-
text-switch handler. Task-level context switching is done by µC/OS-II by issuing an 80x86
INT instruction to this vector location. I decided to use vector 0x80 (i.e., 128) because it’s not
used by either DOS or the BIOS.

L1.2(5) A binary semaphore is created to guard access to the random-number generator function pro-
vided by the Borland C/C++ library. A semaphore is an object provided by the kernel to pre-
vent multiple tasks from accessing the same resource (in this case a function) at the same
time.  I decided to use a semaphore because I didn’t know whether or not the random-genera-
tor function was reentrant; I assumed it was not. By initializing the semaphore to 1, I’m telling
µC/OS-II to allow only one task to access the random-generator function at any given time.  A
semaphore must be created before it can be used, which is done by calling OSSemCreate()
and specifying its initial value. OSSemCreate() returns a handle [see Listing 1.1(6)] to the
semaphore, which must be used to reference this particular semaphore.

L1.2(6) Before starting multitasking, you have to create at least one task. For this example, I called
this task TaskStart(). You create a task because you want to tell µC/OS-II to manage the
task.  The OSTaskCreate() function receives four arguments. The first argument is a pointer
to the task’s address, in this case TaskStart().  The second argument is a pointer to data that
you want to pass to the task when it first starts.  In this case, there is nothing to pass, and thus
I passed a NULL pointer. It could, however, have been anything. I’ll discuss the use of this
argument in Example #4. The third argument is the task’s top-of-stack (TOS). With
µC/OS-II, as with most preemptive kernels, each task requires its own stack space.  Each task
in µC/OS-II can have a different size, but, for simplicity, I made them all the same. On the
80x86 CPU, the stack grows downwards, and thus we must pass the highest, most valid TOS

    OSTaskCreate(TaskStart, (void *)0, &TaskStartStk[TASK_STK_SIZE - 1], 0); (6)

    OSStart();                                                               (7)

}

Listing 1.2 Example #1, TEST.C, main(). (Continued)
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address to OSTaskCreate(). In this case, the stack is called TaskStartStk[] and is allo-
cated at compile time.  A stack must be declared having a type OS_STK [see Listing 1.1(4)].
The size of the stack is declared in Listing 1.1(2).  For the 80x86, an OS_STK is a 16-bit value,
and thus the size of the stack is 1024 bytes.  Finally, we must specify the priority of the task
being created.  The lower the priority number, the higher the priority (i.e., its importance).

As previously mentioned, µC/OS-II allows you to create up to 63 tasks.  However, each
task must have a unique priority number between 0 and 62.  You’re the one that actually
decides what priority to give your tasks, based on your application requirements.  Priority
level 0 is the highest priority.

L1.2(7) OSStart() is then called to start multitasking and give control to µC/OS-II.  It is very impor-
tant that you create at least one task before calling OSStart(). Failure to do this action will
certainly make your application crash. In fact, you might always want to create only one task
if you are planning on using the CPU usage statistic task.

OSStart()’s job is to determine which, of all the tasks created, is the most important one
(highest priority) and start executing this task.  In our case, µC/OS-II created two low priority
tasks: the idle task and the statistic task.  main() created TaskStart() with a priority of 0.
As I mentioned, priority 0 is the highest priority, and thus OSStart() starts executing
TaskStart().

You should note that OSStart() doesn’t return to main(). However, if you call PC_DOSReturn(),
multitasking is halted, and your application returns to DOS (but not main()).  In an embedded system,
there is no need for an equivalent function to PC_DOSReturn() because you would most likely not be
returning to anything!

As I mentioned in the previous section, OSStart() selects TaskStart() as the most important task
to run first.  TaskStart() is shown in Listing 1.3.

Listing 1.3 Example #1, TEST.C, TaskStart(). 
void  TaskStart (void *pdata)

{

#if OS_CRITICAL_METHOD == 3                      

    OS_CPU_SR  cpu_sr;

#endif

    char       s[100];

    INT16S     key;

    pdata = pdata;                                                            (1)

    TaskStartDispInit();                                                      (2)

    OS_ENTER_CRITICAL();                                                      (3)

    PC_VectSet(0x08, OSTickISR);                                              (4)

    PC_SetTickRate(OS_TICKS_PER_SEC);                                         (5)

    OS_EXIT_CRITICAL();                                                       (6)
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L1.3(1) TaskStart() begins by setting pdata to itself. I do this because some compilers complain
(error or warning) if pdata is not referenced. In other words, I fake the usage of pdata!
pdata is a pointer passed to your task when the task is created.  The second argument passed
in OSTaskCreate() is none other than the argument pdata of a task [see L1.2(6)].  Because I
passed a NULL pointer [again see L1.2(6)], I am not passing anything to TaskStart().

L1.3(2) TaskStart() then calls TaskStartDispInit() to initialize the display, as shown in Figure
1.2.  TaskStartDispInit() makes 25 consecutive calls to PC_DispStr() (see Chapter 18,
“PC Services”) to fill the 25 lines of text of a typical DOS window.

L1.3(3) TaskStart() then invokes the macro OS_ENTER_CRITICAL().  OS_ENTER_CRITICAL() is
basically a processor-specific macro, and it’s used to disable interrupts (see Chapter 13, Port-
ing µC/OS-II).

L1.3(4) µC/OS-II, like all kernels, requires a time source to keep track of delays and timeouts. In real
mode, the PC offers such a time source, which occurs every 54.925ms (18.20648Hz) and is
called a tick.  PC_VectSet() allows us to replace the address where the PC goes to service the
DOS tick with one that is used by µC/OS-II. However, µC/OS-II still calls the DOS tick han-
dler every 54.925ms. This technique is called chaining and is set up by PC_DOSSaveReturn()
(see Chapter 18, “PC Services”).

L1.3(5) We then change the tick rate from 18.2Hz to 200Hz. I selected 200Hz because it’s almost
an exact multiple of 18.2Hz (i.e., 11 times faster). I never quite understood why IBM
selected 18.2Hz instead of 20Hz as the tick rate on the original PC. Instead of setting up the
82C54 timer to divide the timer input frequency by 59,659 to obtain a nice 20Hz, it appears
that they left the 16-bit timer to overflow every 65,536 pulses! Changing the tick rate is
handled by another PC service called PC_SetTickRate(), which is passed the desired tick
rate (OS_TICKS_PER_SEC is set to 200 in OS_CPU.H).

    OSStatInit();                                                             (7)

    TaskStartCreateTasks();                                                   (8)

    for (;;) {                                                                (9)

        TaskStartDisp();                                                     (10)

        if (PC_GetKey(&key) == TRUE) {                                       (11)

            if (key == 0x1B) {                                               (12)

                PC_DOSReturn();                                              (13)

            }

        }

        OSCtxSwCtr = 0;                                                      (14)

        OSTimeDlyHMSM(0, 0, 1, 0);                                           (15)

    }

}

Listing 1.3 Example #1, TEST.C, TaskStart(). (Continued)
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L1.3(6) We then invoke the macro OS_EXIT_CRITICAL(). OS_EXIT_CRITICAL() is a proces-

sor-specific macro and is used to reenable interrupts (see Chapter 13, “Porting µC/OS-II”).
OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL() must be used in pairs.

L1.3(7) OSStatInit() is called to determine the speed of your CPU (see Chapter 3, “Getting Started
with µC/OS-II”).  This function allows µC/OS-II to know what percentage of the CPU is
actually being used by all the tasks.

L1.3(8) TaskStart() then calls TaskStartCreateTasks() to let µC/OS-II manage more tasks. Specif-
ically, we are adding N_TASKS identical tasks [see Listing 1.1(2)]. TaskStartCreateTasks() is
shown in Listing 1.4.

Figure 1.2 Initialization of the display byTaskStartDispInit().

Listing 1.4 Example #1, TEST.C, 
TaskStartCreateTasks(). 

static  void  TaskStartCreateTasks (void)

{

    INT8U  i;

    for (i = 0; i < N_TASKS; i++) {

        TaskData[i] = '0' + i;                                                (1)

        OSTaskCreate(Task,                                                     (2)

                    (void *)&TaskData[i],                                     (3)
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L1.4(1) An array is initialized to contain the ASCII characters 0 to 9 [see also Listing 1.1(5)].

L1.4(2) The loop initializes N_TASKS identical tasks called Task(). Task() is responsible for placing
an ASCII character at a random location on the screen.  In fact, each instance of Task()
places a different character.

L1.4(3) Each of these task receive a pointer to the array of ASCII characters.  Each task in fact
receives a pointer to a different character.  

L1.4(4) Again, each task requires its own stack space [see Listing 1.1(3)].

L1.4(5) With µC/OS-II, each task must have a unique priority. Because priority number 0 is already
used by TaskStart(), I decided to create tasks with priorities 1 through 10.

As each task is created, µC/OS-II determines whether the created task is more important
than the creator.  If the created task had a higher priority, then µC/OS-II would immediately
run the created task.  However, because TaskStart() has the highest priority (priority 0),
none of the created tasks execute just yet.

We can now resume discussion of Listing 1.3.

L1.3(9) With µC/OS-II, each task must be an infinite loop.  

L1.3(10) TaskStartDisp() is called to display information at the bottom of the DOS window (see
Figure 1.1).  Specifically, TaskStartDisp() prints the number of tasks created, the current
CPU usage in percentage, the number of context switches, the version of µC/OS-II, and,
finally, whether your processor has a floating-point unit (FPU) or not.

L1.3(11) TaskStart() then checks to see if you pressed a key by calling PC_GetKey().

L1.3(12)

L1.3(13) TaskStart() determines whether you pressed the Esc key on your keyboard and, if so, calls
PC_DOSReturn() to exit this example and return to the DOS prompt.  You can find out how
this action is done by referring to Chapter 18, “PC Services.”

L1.3(14) If you didn’t press the Esc key, the global variable OSCtxSwCtr (the context-switch counter)
is cleared so that we can display the number of context switches in one second.

L1.3(15) Finally, TaskStart() is suspended (does not run) for one complete second by calling
OSTimeDlyHMSM().  The HMSM stands for hours, minutes, seconds, and milliseconds and cor-
responds to the arguments passed to OSTimeDlyHMSM().  Because TaskStart() is suspended
for one second, µC/OS-II starts executing the next most important task, in this case Task()
at priority 1. You should note that without OSTimeDlyHMSM() (or other similar functions),
TaskStart() would be a true infinite loop, and other tasks would never get a chance to run.

The code for Task() is shown in Listing 1.5.

L1.5(1) As I previously mentioned, a µC/OS-II task is typically an infinite loop.

                    &TaskStk[i][TASK_STK_SIZE - 1],                           (4)

                    i + 1);                                                   (5)

    }

}

Listing 1.4 Example #1, TEST.C, 
TaskStartCreateTasks(). (Continued)
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L1.5(2) The task starts by acquiring the semaphore, which guards access to the Borland compiler ran-
dom-number-generator function.  To call the semaphore, call OSSemPend() and pass it the
handle [see L1.1(6)] of the semaphore, which was created to guard access to the random-
number-generator function. The second argument of OSSemPend() is used to specify a time-
out.  A value of 0 means that this task will wait forever for the semaphore. Because the
semaphore was initialized with a count of one and no other task has requested the semaphore,
Task() is allowed to continue execution. If the semaphore was owned by another task,
µC/OS-II would have suspended this task and executed the next most important task.

L1.5(3) The random-number-generator function is called and a value between 0 and 79 (inclusively)
is returned.  This value happens to be the x-coordinate where we want to display the charac-
ter 0 (for this task) on the screen.

L1.5(4) Again, the random-number-generator is called, and returns a number between 0 and 15
(inclusively). This value is used to determine the y-coordinate of the character to display.

L1.5(5) The semaphore is released by calling OSSemPost(). Here we simply need to specify the
semaphore handle.

L1.5(6) We can now display the character that was passed to Task() when Task() was created.  For
the first instance of Task(), the character is 0, and is the last instance, it’s 9.  I added an offset
of five lines from the top so that I don’t overwrite the header at the top of the display (see Fig-
ure 1.1).

L1.5(7) Finally, Task() calls OSTimeDly() to tell µC/OS-II that it’s done executing and to give other
tasks a chance to run.  The value of 1 means that I want this task to delay for one clock tick,
or 5ms because the tick rate is 200Hz.  When OSTimeDly() is called, µC/OS-II suspends the
calling function and executes the next most important task.  In this case, it is another instance
of Task(), which displays 1. This process goes on for all instances of Task(), and thus
that’s why Figure 1.1 looks the way it does.

Listing 1.5 Example #1, TEST.C, Task(). 
void  Task (void *pdata)

{

    INT8U  x;

    INT8U  y;

    INT8U  err;

    for (;;) {                                                                (1)

        OSSemPend(RandomSem, 0, &err);                                        (2)

        x = random(80);                                                       (3)

        y = random(16);                                                       (4)

        OSSemPost(RandomSem);                                                 (5)

                                      

        PC_DispChar(x, y + 5, *(char *)pdata, DISP_FGND_LIGHT_GRAY);          (6)

        OSTimeDly(1);                                                         (7)

    }

}
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If you have the Borland C/C++ v4.5x compiler installed in the C:\BC45 directory, you can experi-
ment with TEST.C.  After modifying TEST.C, you can type MAKETEST from the command prompt of the
TEST directory to build a new TEST.EXE.  If you don’t have the Borland C/C++ v4.5x compiler or you
have it installed in a different directory, you can make the appropriate changes to TEST.MAK,
INCLUDES.H, and TEST.LNK.

The SOURCE directory contains four files: INCLUDES.H, OS_CFG.H, TEST.C, and TEST.LNK. OS_CFG.H
is used to determine µC/OS-II configuration options. TEST.LNK is the linker-command file for the Bor-
land linker, TLINK.

1.02 Example #2
Example #2 demonstrates the stack-checking feature of µC/OS-II.  The amount of stack space used by
each task is displayed along with the amount of free stack space.  Also, Example #2 shows the execution
time of the stack-checking function OSTaskStkChk() because it depends on the size of each stack.  It
turns out that a heavily used stack requires less processing time.

The code for Example #2 is found in the \SOFTWARE\uCOS-II\EX2_x86L\BC45 directory.  You can
open a DOS window and type

CD  \SOFTWARE\uCOS-II\Ex2_x86L\BC45\TEST
To execute Example #2, type TEST at the command prompt.  The DOS window runs the TEST.EXE

program.
After about one second, you should see the screen shown in Figure 1.3.
Example #2 consists of nine tasks, as displayed in the lower left of Figure 1.3.  Of those nine tasks,

µC/OS-II creates two internal tasks: the idle task and a task that determines CPU usage. Example #2
creates the other seven tasks.

Example #2 shows you how you can display task statistics beyond the number of tasks created, the
number of context switches, and the CPU usage.  Specifically, Example #2 shows you how you can find
out how much stack space each task is actually using and how much execution time it takes to determine
the size of each task stack.

Example #2 makes use of the extended task-create function (OSTaskCreateExt()) and the µC/OS-II
stack-checking feature [OSTaskStkChk()]. Stack checking is useful when you don’t actually know
ahead of time how much stack space you need to allocate for each task. In this case, you allocate much
more stack space than you think you need and let µC/OS-II tell you exactly how much stack space is
actually used. You obviously need to run the application long enough and under your worst case condi-
tions to get valid numbers. Your final stack size should accommodate system expansion, so make sure
you allocate between 10–25% more. In safety-critical applications, however, you might even want to
consider 100% more! What you get from stack checking is a ballpark figure; you are not looking for an
exact stack usage.

The µC/OS-II stack-checking function fills the stack of a task with zeros when the task is created. You
accomplish this by telling OSTaskCreateExt() that you want to clear the stack upon task creation and
that you want to check the stack (i.e., by setting the OS_TASK_OPT_STK_CLR and OS_TASK_OPT_STK_CHK
for the opt argument). If you intend to create and delete tasks, you should set these options so that a new
stack is cleared every time the task is created. You should note that having OSTaskCreateExt() clear the
stack increases execution overhead, which obviously depends on the stack size.

µC/OS-II scans the stack, starting at the bottom until it finds a nonzero entry. As the stack is scanned,
µC/OS-II increments a counter that indicates how many entries are free.

The source code for Example #2 is found in TEST.C, in the SOURCE directory.  To get there from the
TEST directory, type

CD  ..\SOURCE
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Portions of  TEST.C are shown in Listing 1.6.  You can examine the actual code using your favorite code
editor.

Figure 1.3 Example #2 running in a DOS window.

Listing 1.6 Example #2, TEST.C. 
#include "includes.h"                                                         (1)

#define          TASK_STK_SIZE     512                                        (2)

#define          TASK_START_ID       0                                        (3)

#define          TASK_CLK_ID         1

#define          TASK_1_ID           2

#define          TASK_2_ID           3

#define          TASK_3_ID           4

#define          TASK_4_ID           5

#define          TASK_5_ID           6

#define          TASK_START_PRIO    10                                        (4)

#define          TASK_CLK_PRIO      11

#define          TASK_1_PRIO        12

#define          TASK_2_PRIO        13

#define          TASK_3_PRIO        14
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Based on what you learned in Example #1, you should recognize:

L1.6(1) INCLUDES.H as the master include file.

L1.6(2) The size of each task’s stack (TASK_STK_SIZE). Again, I made all stack sizes the same for
simplicity, but, with µC/OS-II, the stack size for each task can be different.

L1.6(5) The storage for the task stacks.

main() for Example #2 is shown in Listing 1.7 and looks very similar to the main() of Example #1.
I only describe the differences.

#define          TASK_4_PRIO        15

#define          TASK_5_PRIO        16

OS_STK        TaskStartStk[TASK_STK_SIZE];                                    (5)

OS_STK        TaskClkStk[TASK_STK_SIZE];              

OS_STK        Task1Stk[TASK_STK_SIZE];                

OS_STK        Task2Stk[TASK_STK_SIZE];                

OS_STK        Task3Stk[TASK_STK_SIZE];                

OS_STK        Task4Stk[TASK_STK_SIZE];                         

OS_STK        Task5Stk[TASK_STK_SIZE];                

OS_EVENT     *AckMbox;                                                        (6)

OS_EVENT     *TxMbox;

Listing 1.7 Example #2, TEST.C, main(). 
void main (void)

{

    OS_STK *ptos;

    OS_STK *pbos;

    INT32U  size;

    PC_DispClrScr(DISP_FGND_WHITE);                        

    OSInit();                                              

    PC_DOSSaveReturn();                                    

    PC_VectSet(uCOS, OSCtxSw);                             

    PC_ElapsedInit();                                                         (1)

    ptos        = &TaskStartStk[TASK_STK_SIZE - 1];                           (2)

Listing 1.6 Example #2, TEST.C. (Continued)
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L1.7(1) main() calls PC_ElapsedInit() to initialize the elapsed-time-measurement function that is
used to measure the execution time of OSTaskStkChk(). This function basically measures
the execution time (i.e., overhead) of two functions: PC_ElapsedStart() and PC_Elapsed-
Stop().  By measuring this time, we can determine fairly precisely how long it takes to exe-
cute code that’s wrapped between these two calls.

L1.7(2)

L1.7(3) TaskStart() in Example #2 is invoking the floating-point emulation library instead of mak-
ing use of the floating-point unit (FPU), which is present on 80486 and higher-end PCs. The
Borland compiler defaults to use its emulation library if an FPU is not detected.  In other
words, if you were to run TEST.EXE on a DOS-based machine equiped with an Intel
80386EX (without an 80387 coprocessor), then the floating-point unit would be emulated.
The emulation library is unfortunately non-reentrant, and we have to trick it in order to allow
multiple tasks to do floating-point math.  For now, let me just say that we have to modify the
task stack to accommodate the floating-point emulation library. This modification is accom-
plished by calling OSTaskStkInit_FPE_x86() (see Chapter 14, “80x86 Port”).  You should
notice from Figure 1.3 that the stack size reported for TaskStart() is 624 instead of 1024.
That’s because OSTaskStkInit_FPE_x86() reserves the difference for the floating-point
emulation library.

L1.7(4) Instead of calling OSTaskCreate() to create TaskStart(), we must call OSTaskCreateExt()
[the extended version of OSTaskCreate()] because we modified the stack and also because we
want to check the stack size at run time (described later).

L1.7(5) OSTaskStkInit_FPE_x86() modifies the top-of-stack pointer, so we must pass the new
pointer to OSTaskCreateExt().

L1.7(6) Instead of passing a hard-coded priority (as I did in Example #1), I created a #define symbol
[see L1.6(4)].

    pbos        = &TaskStartStk[0];

    size        = TASK_STK_SIZE;

    OSTaskStkInit_FPE_x86(&ptos, &pbos, &size);                               (3)

    OSTaskCreateExt(TaskStart,                                                (4)

                   (void *)0,

                   ptos,                                                      (5)

                   TASK_START_PRIO,                                           (6)

                   TASK_START_ID,                                             (7)

                   pbos,                                                      (8)

                   size,                                                      (9)

                   (void *)0,                                                (10)

                   OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);               (11)

    OSStart();                                             

}

Listing 1.7 Example #2, TEST.C, main(). (Continued)
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L1.7(7) OSTaskCreateExt() requires that you pass a task identifier (ID).  The actual value can be
anything because this field is not actually used by µC/OS-II at this time.

L1.7(8) OSTaskStkInit_FPE_x86() modifies the bottom-of-stack pointer, so we must pass the new
pointer to OSTaskCreateExt().

L1.7(9) OSTaskStkInit_FPE_x86() also modifies the size of the stack, so we must pass the new size
to OSTaskCreateExt().

L1.7(10) One of OSTaskCreateExt()’s arguments is a task-control-block (TCB) extension pointer.
This argument is not used in Example #2, so we simply pass a NULL pointer.

L1.7(11) Finally, the last argument to OSTaskCreateExt() is a set of options (i.e., bits) that tell
OSTaskCreateExt() that we are doing stack-size checking and that we want to clear the
stack when the task is created.

TaskStart() is similar to the one described in Example #1 and is shown in Listing 1.8. Again, I
only describe the differences.

Listing 1.8 Example #2, TEST.C, TaskStart(). 
void  TaskStart (void *pdata)

{

#if OS_CRITICAL_METHOD == 3                                

    OS_CPU_SR  cpu_sr;

#endif

    INT16S     key;

    pdata = pdata;                                         

    TaskStartDispInit();                                                      (1)

    OS_ENTER_CRITICAL();                                   

    PC_VectSet(0x08, OSTickISR);

    PC_SetTickRate(OS_TICKS_PER_SEC);                      

    OS_EXIT_CRITICAL();

    OSStatInit();                                          

    AckMbox = OSMboxCreate((void *)0);                                        (2)

    TxMbox  = OSMboxCreate((void *)0);

    TaskStartCreateTasks();                                                   (3)

    for (;;) {

        TaskStartDisp();                                          

        if (PC_GetKey(&key)) {                             
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L1.8(1) Although the function call is identical, TaskStartDispInit() initializes the display, as
shown in Figure 1.4.

Figure 1.4 Initialization of the display byTaskStartDispInit().

L1.8(2) µC/OS-II allows you to have tasks or ISRs send messages to other tasks.  In Example #2, I
have Task 4 send a message to Task 5, and Task 5 will respond back to Task 4 with an
acknowledgment message (described later).  For this purpose, we need to create two kernel
objects that are called mailboxes.  A mailbox allows a task or an ISR to send a pointer to
another task.  The mailbox only has room for a single pointer.  What the pointer points to is
application specific, and, of course both the sender and the receiver need to agree about the
contents of the message.

L1.8(3) TaskStartCreateTasks() creates six tasks using OSTaskCreateExt().  These tasks are not
doing floating-point operations, and thus there is no need to call OSTaskStkInit_FPE_x86()
to modify the stacks.  However, I am doing stack checking on these tasks, so I call
OSTaskCreateExt() with the proper options set.

            if (key == 0x1B) {                             

                PC_DOSReturn();                            

            }

        }

        OSCtxSwCtr = 0;                                    

        OSTimeDly(OS_TICKS_PER_SEC);                              (4)

    }

}

Listing 1.8 Example #2, TEST.C, TaskStart(). (Continued)
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L1.8(4) In Example #1, I called OSTimeDlyHMSM() to delay TaskStart() for one second.  I decided
to use OSTimeDly(OS_TICKS_PER_SEC) to show you that you can use either method.  How-
ever, OSTimeDly() is slightly faster than OSTimeDlyHMSM().

The code for Task1() is shown in Listing 1.9. Task1() checks the size of the stack for each of the
seven application tasks (the six tasks created by TaskStart() and TaskStart() itself).

L1.9(1)

L1.9(3) The execution time of OSTaskStkChk() is measured by wrapping OSTaskStkChk() with
calls to PC_ElapsedStart() and PC_ElapsedStop().  PC_ElapsedStop() returns the time
difference in microseconds.

L1.9(2) OSTaskStkChk() is a service provided by µC/OS-II to allow your code to determine the
actual stack usage of a task.  You call OSTaskStkChk() by passing it the task priority of the
task you want to check.  The second argument to the function is a pointer to a data structure

Listing 1.9 Example #2, TEST.C, Task1(). 
void  Task1 (void *pdata)

{

    INT8U       err;

    OS_STK_DATA data;                       

    INT16U      time;                       

    INT8U       i;

    char        s[80];

    pdata = pdata;

    for (;;) {

        for (i = 0; i < 7; i++) {

            PC_ElapsedStart();                                                (1)

            err  = OSTaskStkChk(TASK_START_PRIO + i, &data);                  (2)

            time = PC_ElapsedStop();                                          (3)

            if (err == OS_NO_ERR) {

                sprintf(s, "%4ld        %4ld        %4ld        %6d",         (4)

                        data.OSFree + data.OSUsed,

                        data.OSFree,

                        data.OSUsed,

                        time);

                PC_DispStr(19, 12 + i, s, DISP_FGND_YELLOW);                  (5)

            }

        }

        OSTimeDlyHMSM(0, 0, 0, 100);                                          (6)

    }

}
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that holds information about the task’s stack.  Specifically, OS_STK_DATA contains the number
of bytes used and the number of bytes free.  OSTaskStkChk() returns an error code that indi-
cates whether the call was successful.  It would not be successful if I had passed the priority
number of a task that didn’t exist.

L1.9(4)

L1.9(5) The information retrieved by OSTaskStkChk() is formatted into a string and displayed.

L1.9(6) I decided to execute this task 10 times per second, but, in an actual product or application,
you would most likely run stack checking every few seconds or so.  In other words, it would
make no sense to consume valuable CPU-processing time to determine worst-case stack
growth.

The code for Task2() and Task3() is shown in Listing 1.10.  Both of these tasks display a spinning
wheel.  The two tasks are almost identical.  Task3() allocates and initializes a dummy array of 500
bytes.  I wanted to consume stack space to show you that OSTaskStkChk() would report that Task3()
has 502 bytes less than Task2() on its stack (500 bytes for the array and two bytes for the 16-bit inte-
ger).  Task2()’s wheel spins clockwise at five rotations per second, and Task3()’s wheel spins counter-
clockwise at 2.5 rotations per second. Task4() and Task5() are shown in Listing 1.11.

Note: If you run Example #2 in a window under Microsoft Windows 95, 98, Me, NT, 2000, or XP,
the rotation might not appear as quick. Simply press and hold the Alt key and then press the Enter
key on your keyboard to make the DOS window use the whole screen. You can go back to window
mode by repeating the operation.

Listing 1.10 Example #2, TEST.C, Task2() and
Task3(). 

void  Task2 (void *data)

{

    data = data;

    for (;;) {

        PC_DispChar(70, 15, '|',  DISP_FGND_WHITE + DISP_BGND_RED);

        OSTimeDly(10);

        PC_DispChar(70, 15, '/',  DISP_FGND_WHITE + DISP_BGND_RED);

        OSTimeDly(10);

        PC_DispChar(70, 15, '-',  DISP_FGND_WHITE + DISP_BGND_RED);

        OSTimeDly(10);

        PC_DispChar(70, 15, '\\', DISP_FGND_WHITE + DISP_BGND_RED);

        OSTimeDly(10);

    }

}
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void  Task3 (void *data)

{

    char    dummy[500];

    INT16U  i;

    data = data;

    for (i = 0; i < 499; i++) {        

        dummy[i] = '?';

    }

    for (;;) {

        PC_DispChar(70, 16, '|',  DISP_FGND_WHITE + DISP_BGND_BLUE);

        OSTimeDly(20);

        PC_DispChar(70, 16, '\\', DISP_FGND_WHITE + DISP_BGND_BLUE);

        OSTimeDly(20);

        PC_DispChar(70, 16, '-',  DISP_FGND_WHITE + DISP_BGND_BLUE);

        OSTimeDly(20);

        PC_DispChar(70, 16, '/',  DISP_FGND_WHITE + DISP_BGND_BLUE);

        OSTimeDly(20);

    }

}

Listing 1.11 Example #2, TEST.C, Task4() and 
Task5(). 

void  Task4 (void *data)

{

    char   txmsg;

    INT8U  err;

    data  = data;

    txmsg = 'A';

    for (;;) {

        OSMboxPost(TxMbox, (void *)&txmsg);                                   (1)

        OSMboxPend(AckMbox, 0, &err);                                         (2)

        txmsg++;                                                              (3)

        if (txmsg == 'Z') {

            txmsg = 'A';                         

        }

    }

Listing 1.10 Example #2, TEST.C, Task2() and
Task3(). (Continued)
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L1.11(1) Task4() sends a message (an ASCII character) to Task5() by posting the message to the
TxMbox.

L1.11(2) Task4() then waits for an acknowledgment from Task5() by waiting on the AckMbox.  The
second argument to the OSMboxPend() call specifies a timeout, and I specified to wait forever
because I passed a value of 0. By specifying a non-zero value, Task4() would have given up
waiting after the specified timeout. The timeout is specified as an integral number of clock
ticks.

L1.11(3) The message is changed when Task5() acknowledges the previous message.

L1.11(4) When Task5() starts execution, it immediately waits (forever) for a message to arrive
through the mailbox TxMbox.  

L1.11(5) When the message arrives, Task5() displays it on the screen.

L1.11(6)

L1.11(7) Task5() then waits for one second before acknowledging Task4().  I decided to wait for one
second so that you could see it change on the screen. In fact, there must either be a delay in
Task5() or one in Task4(), otherwise all lower priority tasks would not be allowed to run!

}

void  Task5 (void *data)

{

    char  *rxmsg;

    INT8U  err;

    data = data;

    for (;;) {

        rxmsg = (char *)OSMboxPend(TxMbox, 0, &err);                          (4)

        PC_DispChar(70, 18, *rxmsg, DISP_FGND_YELLOW + DISP_BGND_RED);        (5)

        OSTimeDlyHMSM(0, 0, 1, 0);                                            (6)

        OSMboxPost(AckMbox, (void *)1);                                       (7)

    }

}

Listing 1.11 Example #2, TEST.C, Task4() and 
Task5(). (Continued)
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Finally, the code for TaskClk() is shown in Listing 1.12.  This task executes every second, simply
obtains the current date and time from a PC service called PC_GetDateTime() (see Chapter 18, “PC
Services”), and displays it on the screen.

If you have the Borland C/C++ v4.5x compiler installed in the C:\BC45 directory, you can experi-
ment with TEST.C.  After modifying TEST.C, you can type MAKETEST from the command prompt of the
TEST directory to build a new TEST.EXE.  If you don’t have the Borland C/C++ v4.5x compiler or you
have it installed in a different directory, you can make changes to TEST.MAK, INCLUDES.H, and
TEST.LNK accordingly.

The SOURCE directory contains four files: INCLUDES.H, OS_CFG.H, TEST.C, and TEST.LNK. OS_CFG.H
is used to determine µC/OS-II configuration options. TEST.LNK is the linker-command file for the Bor-
land linker, TLINK.

1.03 Example #3
Example #3 shows how you can extend the functionality of µC/OS-II.  Specifically, Example #3 uses
the TCB extension capability of OSTaskCreateExt(), the user-defined context-switch hook
[OSTaskSwHook()], the user-defined statistic-task hook [OSTaskStatHook()], and message queues.  In
this example, you should see how easy it is to determine how many times a task executes and how much
time a task takes to execute.  The execution time can be used to determine the CPU usage of a task rela-
tive to the other tasks.

The code for Example #3 is found in the \SOFTWARE\uCOS-II\EX3_x86L\BC45 directory.  You can
open a DOS window and type

CD  \SOFTWARE\uCOS-II\Ex3_x86L\BC45\TEST
As usual, to execute Example #3, type TEST at the command prompt.  The DOS window runs the

TEST.EXE program.
After about one second, you should see the screen shown in Figure 1.5. I let TEST.EXE run for a

couple of seconds before I captured the screen shot.  Seven tasks are shown along with how many
times they executed (Counter column), the execution time of each task in microseconds

Listing 1.12 Example #2, TEST.C, TaskClk(). 
void  TaskClk (void *data)

{

    char s[40];

    data = data;

    for (;;) {

        PC_GetDateTime(s);

        PC_DispStr(60, 23, s, DISP_FGND_BLUE + DISP_BGND_CYAN);

        OSTimeDly(OS_TICKS_PER_SEC);

    }

}
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(Exec.Time(uS) column), the total execution time since I started (Tot.Exec.Time(uS) column), and
finally, the percentage of execution time of each task relative to the other tasks (%Tot. column).

Example #3 consists of nine tasks, as displayed in the lower left of Figure 1.5.  Of those nine tasks,
µC/OS-II creates two internal tasks: the idle task and a task that determines CPU usage. Example #3
creates the other seven tasks.

Figure 1.5 Example #3 running in a DOS window.

Portions of TEST.C are shown in Listing 1.13. You can examine the actual code using your favorite code
editor.

Listing 1.13 Example #3, TEST.C. 
#include  "includes.h"

#define          TASK_STK_SIZE     512                

#define          TASK_START_ID       0                

#define          TASK_CLK_ID         1

#define          TASK_1_ID           2

#define          TASK_2_ID           3

#define          TASK_3_ID           4

#define          TASK_4_ID           5

#define          TASK_5_ID           6
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L1.13(1) A data structure is created to hold additional information about a task.  Specifically, the data
structure allows you to add a name to a task (µC/OS-II doesn’t directly provide this feature),
keep track of how many times a task has executed, how long a task takes to execute, and
finally the total time a task has executed.

L1.13(2) An array of the TASK_USER_DATA structure is allocated to hold information about each task
created (except the idle and statistic tasks).

L1.13(3) µC/OS-II provides another message-passing mechanism called a message queue. A message
queue is like a mailbox except that instead of being able to send a single pointer, a queue can
hold more than one message (i.e., pointers).  A message queue thus allows your tasks or
ISRs to send messages to other tasks.  What each of the pointers point to is application spe-
cific, and, of course, both the sender and the receiver need to agree about the contents of the

#define          TASK_START_PRIO    10                

#define          TASK_CLK_PRIO      11

#define          TASK_1_PRIO        12

#define          TASK_2_PRIO        13

#define          TASK_3_PRIO        14

#define          TASK_4_PRIO        15

#define          TASK_5_PRIO        16

#define          MSG_QUEUE_SIZE     20                

typedef struct {                                                              (1)

    char    TaskName[30];

    INT16U  TaskCtr;

    INT16U  TaskExecTime;

    INT32U  TaskTotExecTime;

} TASK_USER_DATA;

OS_STK          TaskStartStk[TASK_STK_SIZE];          

OS_STK          TaskClkStk[TASK_STK_SIZE];            

OS_STK          Task1Stk[TASK_STK_SIZE];              

OS_STK          Task2Stk[TASK_STK_SIZE];              

OS_STK          Task3Stk[TASK_STK_SIZE];              

OS_STK          Task4Stk[TASK_STK_SIZE];              

OS_STK          Task5Stk[TASK_STK_SIZE];              

TASK_USER_DATA  TaskUserData[7];                                              (2)

OS_EVENT     *MsgQueue;                                                       (3)

void         *MsgQueueTbl[20];                        

Listing 1.13 Example #3, TEST.C. (Continued)
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messages.  Two elements are needed to create a message queue: an OS_EVENT structure and
an array of pointers. The depth of the queue is determined by the number of pointers allo-
cated in the pointer array.  In this case, the message queue contains 20 entries.

main() is shown in Listing 1.14.  Once more, only the new features are described.

L1.14(1) Before a task is created, we assign a name to the task using the ANSI C library function
strcpy().  The name is stored in the data structure [see L1.13(1)] assigned to the task.

L1.14(2) TaskStart() is created using OSTaskCreateExt() and passed a pointer to its user data
structure.  The TCB of each task in µC/OS-II can store a pointer to a user-provided data
structure (see Chapter 3, “Kernel Structure” for details).  This feature allows you to extend
the functionality of µC/OS-II, as you will see shortly.

Listing 1.14  Example #3, TEST.C, main(). 
void  main (void)

{

    PC_DispClrScr(DISP_BGND_BLACK);                        

    OSInit();                                              

    PC_DOSSaveReturn();                                    

    PC_VectSet(uCOS, OSCtxSw);                             

    PC_ElapsedInit();                                      

    strcpy(TaskUserData[TASK_START_ID].TaskName, "StartTask");                (1)

    OSTaskCreateExt(TaskStart,

                    (void *)0,

                    &TaskStartStk[TASK_STK_SIZE - 1],

                    TASK_START_PRIO,

                    TASK_START_ID,

                    &TaskStartStk[0],

                    TASK_STK_SIZE,

                    &TaskUserData[TASK_START_ID],                             (2)

                    0);

    OSStart();                                             

}
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The code for TaskStart() is shown in Listing 1.15.

Listing 1.15 Example #3, TEST.C, TaskStart(). 
void  TaskStart (void *pdata)

{

#if OS_CRITICAL_METHOD == 3                                

    OS_CPU_SR  cpu_sr;

#endif

    INT16S     key;

    pdata = pdata;                                         

    TaskStartDispInit();                                   

    OS_ENTER_CRITICAL();                                   

    PC_VectSet(0x08, OSTickISR);

    PC_SetTickRate(OS_TICKS_PER_SEC);                      

    OS_EXIT_CRITICAL();

    OSStatInit();                                          

    MsgQueue = OSQCreate(&MsgQueueTbl[0], MSG_QUEUE_SIZE);                    (1)

    TaskStartCreateTasks();                                                   (2)

    for (;;) {

        TaskStartDisp();                                  

        if (PC_GetKey(&key)) {                             

            if (key == 0x1B) {                             

                PC_DOSReturn();                            

            }

        }

        OSCtxSwCtr = 0;                                    

        OSTimeDly(OS_TICKS_PER_SEC);                       

    }

}
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L1.15(1) Not much has been added except the creation of the message queue that is used by Task1(),

Task2(), Task3(), and Task4().

L1.15(2) As with Example #2, TaskStartCreateTasks() create six tasks.  The difference is that each
task is assigned an entry in the TaskUserData[] array.  As each task is created, it’s assigned
a name just as I did when I created TaskStart() [see L1.14(1)].

As soon as TaskStart() calls OSTimeDly(OS_TICKS_PER_SEC), µC/OS-II locates the next highest
priority task that’s ready to run, which is Task1(). Listing 1.16 shows the code for Task1(), Task2(),
Task3(), and Task4() because I discuss them next.

Listing 1.16 Example #3, TEST.C, Task1() through 
Task4(). 

void  Task1 (void *pdata)

{

    char  *msg;

    INT8U  err;

    pdata = pdata;

    for (;;) {

        msg = (char *)OSQPend(MsgQueue, 0, &err);                             (1)

        PC_DispStr(70, 13, msg, DISP_FGND_YELLOW + DISP_BGND_BLUE);           (2)

        OSTimeDlyHMSM(0, 0, 0, 100);                                          (3)

    }

}

void  Task2 (void *pdata)

{

    char  msg[20];

    pdata = pdata;

    strcpy(&msg[0], "Task 2");

    for (;;) {

        OSQPost(MsgQueue, (void *)&msg[0]);                                   (4)

        OSTimeDlyHMSM(0, 0, 0, 500);                                          (5)

    }

}
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L1.16(1) Task1() waits forever for a message to arrive through a message queue.

L1.16(2) When a message arrives, it is displayed on the screen.

L1.16(3) The task is delayed for 100ms to allow you to see the message received.

L1.16(4) Task2() sends the message “Task 2” to Task1() through the message queue.

L1.16(5) Task2() waits for half a second before sending another message.

L1.16(6)

L1.16(7) Task3() and Task4() send their messages and also wait half a second between messages.

Another task, Task5() (not shown) does nothing useful except delay itself for 1/10 of a second.
Note that all µC/OS-II tasks must call a service provided by µC/OS-II to wait either for time to expire or
for an event to occur. If this action is not done, the task prevents all lower priority tasks from running.

Finally, TaskClk() (also not shown) displays the current date and time once a second.
Events happen behind the scenes that are not apparent just by looking at the tasks in TEST.C.

µC/OS-II is provided in source form, and it’s quite easy to add functionality to µC/OS-II through special

void  Task3 (void *pdata)

{

    char  msg[20];

    pdata = pdata;

    strcpy(&msg[0], "Task 3");

    for (;;) {

        OSQPost(MsgQueue, (void *)&msg[0]);                                   (6)

        OSTimeDlyHMSM(0, 0, 0, 500);

    }

}

void  Task4 (void *pdata)

{

    char  msg[20];

    pdata = pdata;

    strcpy(&msg[0], "Task 4");

    for (;;) {

        OSQPost(MsgQueue, (void *)&msg[0]);                                   (7)

        OSTimeDlyHMSM(0, 0, 0, 500);

    }

}

Listing 1.16 Example #3, TEST.C, Task1() through 
Task4(). (Continued)



Example #3 27

1

functions called hooks.  As of v2.52, nine hook functions exist, and the prototypes for these functions are
shown in Listing 1.17.

The hook functions are normally found in a file called OS_CPU_C.C and are generally written by the
person who does the port for the processor you intend to use. However, if you set a configuration constant
called OS_CPU_HOOKS_EN to 0, you can declare the hook functions in a different file. OS_CPU_HOOKS_EN is
one of many configuration constants found in the header file OS_CFG.H.  Every project that uses µC/OS-II
needs its own version of OS_CFG.H because you might want to configure µC/OS-II differently for each
projet. Each example provided in this book contains its own OS_CFG.H in the SOURCE directory.

In Example #3, I set OS_CPU_HOOKS_EN to 0 and redefined the functionality of the hook functions in
TEST.C.  As shown in Listing 1.18, seven of the nine hooks don’t actually do anything and thus don’t
contain any code.

Listing 1.17 µC/OS-II’s hooks. 
void  OSInitHookBegin(void);

void  OSInitHookEnd(void);

void  OSTaskCreateHook(OS_TCB *ptcb);

void  OSTaskDelHook(OS_TCB *ptcb);

void  OSTaskIdleHook(void);

void  OSTaskStatHook(void);

void  OSTaskSwHook(void);

void  OSTCBInitHook(OS_TCB *ptcb);

void  OSTimeTickHook(void);

Listing 1.18 Example #3, TEST.C, empty hook 
functions. 

void  OSInitHookBegin (void)

{

}

void  OSInitHookEnd (void)

{

}

void  OSTaskCreateHook (OS_TCB *ptcb)

{

    ptcb = ptcb;

}

void  OSTaskDelHook (OS_TCB *ptcb)

{

    ptcb = ptcb;

}
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The code for OSTaskSwHook() is shown in Listing 1.19 and allows us to measure the execution time
of each task, keeps track of how often each task executes, and accumulates total execution times of each
task. OSTaskSwHook() is called when µC/OS-II switches from a low priority task to a higher priority
task.

L1.19(1) A timer on the PC obtains the execution time of the task being switched out through
PC_ElapsedStop().

void  OSTaskIdleHook (void)

{

}

void  OSTCBInitHook (OS_TCB *ptcb)

{

    ptcb = ptcb;

}

void  OSTimeTickHook (void)

{

}

Listing 1.19 The task switch hook, OSTaskSwHook().
void  OSTaskSwHook (void)

{

    INT16U           time;

    TASK_USER_DATA  *puser;

    time  = PC_ElapsedStop();                                                 (1)

    PC_ElapsedStart();                                                        (2)

    puser = OSTCBCur->OSTCBExtPtr;                                            (3)

    if (puser != (TASK_USER_DATA *)0) {                                       (4)

        puser->TaskCtr++;                                                     (5)

        puser->TaskExecTime     = time;                                       (6)

        puser->TaskTotExecTime += time;                                       (7)

    }

}

Listing 1.18 Example #3, TEST.C, empty hook 
functions. (Continued)
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L1.19(2) It is assumed that the timer was started by calling PC_ElapsedStart() when the task was

switched in. The first context switch probably reads an incorrect value, but this is not really
critical.

L1.19(3) When OSTaskSwHook() is called, the global pointer OSTCBCur points to the TCB of the cur-
rent task, while OSTCBHighRdy points to the TCB of the new task.  In this case, however, we
don’t use OSTCBHighRdy. OSTaskSwHook() retrieves the pointer to the TCB extension that
was passed  in OSTaskCreateExt().

L1.19(4) We then check to make sure we don’t de-reference a NULL pointer.  In fact, some of the tasks
in this example do not contain a TCB extension pointer: the idle and the statistic tasks.

L1.19(5) We increment a counter that indicates how many times the task has executed. This counter is
useful to determine if a particular task is running.

L1.19(6) The measured execution time (in microseconds) is stored in the TCB extension.

L1.19(7) The total execution time (in microseconds) of the task is also stored in the TCB extension.
This element allows you to determine the percent of time each task takes with respect to
other tasks in an application (discussed shortly).

When enabled (see OS_TASK_STAT_EN in OS_CFG.H), the statistic task OSTaskStat() calls the
user-definable function OSTaskStatHook() that is shown in Listing 1.20. OSTaskStatHook() is called
every second.

Listing 1.20 The statistic task hook, 
OSTaskStatHook(). 

void  OSTaskStatHook (void)

{

    char    s[80];

    INT8U   i;

    INT32U  total;

    INT8U   pct;

    total = 0L;                                          

    for (i = 0; i < 7; i++) {

        total += TaskUserData[i].TaskTotExecTime;                             (1)

        DispTaskStat(i);                                                      (2)

    }
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L1.20(1) The total execution time of all the tasks (except the statistic task) is computed. 

L1.20(2) Individual statistics are displayed at the proper location on the screen by DispTaskStat(),
which takes care of converting the values into ASCII. In addition, DispTaskStat() also dis-
plays the name of each task.

L1.20(3)

L1.20(4) The percent execution time is computed for each task and displayed.

If you have the Borland C/C++ v4.5x compiler installed in the C:\BC45 directory, you can experi-
ment with TEST.C.  After modifying TEST.C, you can type MAKETEST from the command prompt of the
TEST directory to build a new TEST.EXE.  If you don’t have the Borland C/C++ v4.5x compiler or your
have it installed in a different directory, you can make changes to TEST.MAK, INCLUDES.H, and
TEST.LNK accordingly.

The SOURCE directory contains four files: INCLUDES.H, OS_CFG.H, TEST.C, and TEST.LNK. OS_CFG.H
is used to determine µC/OS-II configuration options. TEST.LNK is the linker-command file for the Bor-
land linker, TLINK.

    if (total > 0) {

        for (i = 0; i < 7; i++) {                        

            pct = 100 * TaskUserData[i].TaskTotExecTime / total;              (3)

            sprintf(s, "%3d %%", pct);

            PC_DispStr(62,                                                    (4)

                       i + 11, 

                       s, 

                       DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY);

        }

    }

    if (total > 1000000000L) {                           

        for (i = 0; i < 7; i++) {

            TaskUserData[i].TaskTotExecTime = 0L;

        }

    }

}

Listing 1.20 The statistic task hook, 
OSTaskStatHook(). (Continued)
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1.04 Example #4
µC/OS-II is written entirely in C and requires some processor-specific code to adapt it to different pro-
cessors. This processor-specific code is called a port. This book comes with two ports for the Intel
80x86 family of processors: Ix86L (see Chapter 14) and Ix86L-FP (see Chapter 15).  Ix86L is used with
80x86 processors that are not fortunate enough to have an FPU, and Ix86L is used in all the examples so
far.  You should note that Ix86L still runs on 80x86 processors that do have an FPU.  Ix86L-FP allows
your applications to use the floating-point hardware capabilities of higher-end 80x86 compatible pro-
cessors.  Example #4 uses Ix86L-FP.

In this example, I created 10 identical tasks, each running 200 times per second.  Each task com-
putes the sine and cosine of an angle (in degrees). The angle being computed by each task is offset by 36
degrees (360 degrees divided by 10 tasks) from each other.  Every time the task executes, it increments
the angle to compute by 0.01 degree.

 The code for Example #4 is found in the \SOFTWARE\uCOS-II\EX4_x86L.FP\BC45 directory.  You
can open a DOS window and type

CD  \SOFTWARE\uCOS-II\Ex4_x86L.FP\BC45\TEST
As usual, to execute Example #4, simply type TEST at the command line prompt.  The DOS window

runs the TEST.EXE program.
After about two seconds, you should see the screen shown in Figure 1.6. I let TEST.EXE run for a few

seconds before I captured the screen shot.
Example #4 consists of 13 tasks, as displayed in the lower left of Figure 1.6. Of those 13 tasks,

µC/OS-II creates two internal tasks: the idle task and a task that determines CPU usage. Example #4
creates the other 11 tasks.

Figure 1.6 Example #4 running in a DOS window.
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By now, you should be able to find your way around TEST.C.  Example #4 doesn’t introduce too
many new concepts.  However, there are a few subtleties done behind the scene, which I describe after
discussing a few items in TEST.C. Listing 1.21 shows the code to create the 10 identical application
tasks.

L1.21(1) Because µC/OS-II doesn’t allow multiple tasks at the same priority, I offset the priority of the
identical tasks by 1 because task priority #0 is assigned to TaskStart().

L1.21(2) The task priority of each task is placed in an array.  

L1.21(3) µC/OS-II allows you to pass an argument to a task when the task is first started.  This argu-
ment is a pointer, and I generally call it pdata (pointer to data). The task priority saved in the
array is actually passed as the task argument, pdata.

L1.21(4) Each of the tasks are doing floating-point calculations, and we want to tell the port (see
Chapter 15) to save the floating-point registers during a context switch.

Listing 1.21 Example #4, TEST.C, TaskStartCreateTasks().
static  void  TaskStartCreateTasks (void)

{

    INT8U  i;

    INT8U  prio;

    for (i = 0; i < N_TASKS; i++) {

        prio        = i + 1;                                                  (1)

        TaskData[i] = prio;                                                   (2)

        OSTaskCreateExt(Task,

                        (void *)&TaskData[i],                                 (3)

                        &TaskStk[i][TASK_STK_SIZE - 1],

                        prio,

                        0,

                        &TaskStk[i][0],

                        TASK_STK_SIZE,

                        (void *)0,

                        OS_TASK_OPT_SAVE_FP);                                 (4)

    }

}
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Listing 1.22 shows the actual task code.

L1.22(1) The argument pdata points to an 8-bit integer containing the task priority.  To make each task
calculate different angles (not that it really matters), I decided to offset each task by 36
degrees.

L1.22(2) sin() and cos() assumes radians instead of degrees, and thus the conversion.

L1.22(3) Each task is delayed by one clock tick (i.e., 50ms), and thus each task executes 200 times per
second.

Except for specifying OS_TASK_OPT_SAVE_FP in TaskStartCreateTasks(), you couldn’t tell from
TEST.C that we are using a different port from the other examples.  In fact, it might be a good idea to
always specify the option OS_TASK_OPT_SAVE_FP when you create a task [using OSTaskCreateExt()],
and, if the port supports floating-point hardware, µC/OS-II can take the necessary steps to save and
retrieve the floating-point registers during a context switch. That’s, in fact, one of the beauties of
µC/OS-II: portability of your applications across different processors.

Listing 1.22 Example #4, TEST.C, Task(). 
void  Task (void *pdata)

{

    FP32   x;

    FP32   y;

    FP32   angle;

    FP32   radians;

    char   s[81];

    INT8U  ypos;

    ypos  = *(INT8U *)pdata + 7; 

    angle = (FP32)(*(INT8U *)pdata) * (FP32)36.0;                           (1)

    for (;;) {

        radians = (FP32)2.0 * (FP32)3.141592 * angle / (FP32)360.0;         (2)

        x       = cos(radians);

        y       = sin(radians);

        sprintf(s, "   %2d       %8.3f  %8.3f     %8.3f",

                *(INT8U *)pdata, angle, x, y);

        PC_DispStr(0, ypos, s, DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY);

        if (angle >= (FP32)360.0) {

            angle  =   (FP32)0.0;

        } else {

            angle +=   (FP32)0.01;

        }

        OSTimeDly(1);                                                       (3)

    }

}
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In order to use a different port (at least for the 80x86), you only need to change the following files:

INCLUDES.H (in the SOURCE directory):
Instead of including:

\software\ucos-ii\ix86l\bc45\os_cpu.h

you simply need to point to a different directory: 
\software\ucos-ii\ix86l-fp\bc45\os_cpu.h

TEST.LNK (in the SOURCE directory):
The linker-command file includes the floating-point emulation library in the non-floating-point ver-
sion:

C:\BC45\LIB\EMU.LIB

and the hardware floating-point library needs to be referenced for the code that makes use of the
FPU:

C:\BC45\LIB\FP87.LIB
TEST.MAK (in the TEST directory):

The directory of the port is changed from:
PORT=\SOFTWARE\uCOS-II\Ix86L\BC45

to:
PORT=\SOFTWARE\uCOS-II\Ix86L-FP\BC45

The compiler flags in the macro C_FLAGS include –f287 for the floating-point version of the code
and omits it in the non-floating-point version.
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Chapter 2

Real-time Systems Concepts
Real-time systems are characterized by the severe consequences that result if logical as well as timing
correctness properties of the system are not met. Two types of real-time systems exist: soft and hard. In
a soft real-time system, tasks are performed by the system as fast as possible, but the tasks don’t have to
finish by specific times. In hard real-time systems, tasks have to be performed not only correctly but on
time. Most real-time systems have a combination of soft and hard requirements. Real-time applications
cover a wide range, but most real-time systems are embedded. An embedded system is a computer built
into a system and not seen by the user as being a computer. The following list shows a few examples of
embedded systems.

Real-time software applications are typically more difficult to design than non-real-time applications.
This chapter describes real-time concepts.

Process control
Food processing
Chemical plants

Automotive
Engine controls
Antilock braking systems

Office automation
FAX machines
Copiers

Computer peripherals
Printers
Terminals
Scanners
Modems

Communication
Switches
Routers

Robots
Aerospace

Flight management systems
Weapons systems
Jet engine controls

Domestic
Microwave ovens
Dishwashers
Washing machines
Thermostats
 35
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2.00 Foreground/Background Systems
Small systems of low complexity are generally designed as shown in Figure 2.1. These systems are
called foreground/background systems or super-loops. An application consists of an infinite loop that
calls modules (i.e., functions) to perform the desired operations (background). Interrupt service routines
(ISRs) handle asynchronous events (foreground). Foreground is also called interrupt level; background
is called task level. Critical operations must be performed by the ISRs to ensure that they are dealt with
in a timely fashion. Because of this, ISRs have a tendency to take longer than they should. Also, infor-
mation for a background module that an ISR makes available is not processed until the background rou-
tine gets its turn to execute, which is called the task-level response. The worst case task-level response
time depends on how long the background loop takes to execute. Because the execution time of typical
code is not constant, the time for successive passes through a portion of the loop is nondeterministic.
Furthermore, if a code change is made, the timing of the loop is affected.

Figure 2.1 Foreground/background systems.

Most high-volume microcontroller-based applications (e.g., microwave ovens, telephones, toys, and
so on) are designed as foreground/background systems. Also, in microcontroller-based applications, it
might be better (from a power consumption point of view) to halt the processor and perform all of the
processing in ISRs.

Background Foreground

ISR

ISR
ISR

Time

Code execution
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2.01 Critical Sections of Code
A critical section of code, also called a critical region, is code that needs to be treated indivisibly. After
the section of code starts executing, it must not be interrupted. To ensure that execution is not inter-
rupted, interrupts are typically disabled before the critical code is executed and enabled when the criti-
cal code is finished (see also Section 2.03, “Shared Resources”).

2.02 Resources
A resource is any entity used by a task. A resource can thus be an I/O device, such as a printer, a key-
board, a display, a variable, a structure, or an array.

2.03 Shared Resources
A shared resource is a resource that can be used by more than one task. Each task should gain exclusive
access to the shared resource to prevent data corruption. This process is called mutual exclusion, and
techniques to ensure mutual exclusion are discussed in Section 2.18, “Mutual Exclusion”.

2.04 Multitasking
Multitasking is the process of scheduling and switching the central processing unit (CPU) between sev-
eral tasks; a single CPU switches its attention between several sequential tasks. Multitasking is like
foreground/background with multiple backgrounds. Multitasking maximizes the use of the CPU and
also provides for modular construction of applications. One of the most important aspects of multitask-
ing is that it allows the application programmer to manage complexity inherent in real-time applica-
tions. Application programs are typically easier to design and maintain if multitasking is used.

2.05 Tasks
A task, also called a thread, is a simple program that thinks it has the CPU all to itself. The design pro-
cess for a real-time application involves splitting the work to be done into tasks responsible for a portion
of the problem. Each task is assigned a priority, its own set of CPU registers, and its own stack area (as
shown in Figure 2.2).

Each task typically is an infinite loop that can be in any one of five states: dormant, ready, running,
waiting (for an event), or ISR (interrupted) (Figure 2.3). The dormant state corresponds to a task that
resides in memory but has not been made available to the multitasking kernel. A task is ready when it
can execute but its priority is less than the currently running task. A task is running when it has control
of the CPU. A task is waiting when it requires the occurrence of an event (for example, waiting for an
I/O operation to complete, a shared resource to be available, a timing pulse to occur, or time to expire).
Finally, a task is in the ISR state when an interrupt has occurred and the CPU is in the process of servic-
ing the interrupt. Figure 2.3 also shows the functions provided by µC/OS-II to make a task move from
one state to another.
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Figure 2.2 Multiple tasks.
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Figure 2.3 Task states.

2.06 Context Switches (or Task Switches)
When a multitasking kernel decides to run a different task, it saves the current task’s context (CPU reg-
isters) in the current task’s context storage area — its stack (Figure 2.2). After this operation is per-
formed, the new task’s context is restored from its storage area and then resumes execution of the new
task’s code. This process is called a context switch or a task switch. Context switching adds overhead to
the application. The more registers a CPU has, the higher the overhead. The time required to perform a
context switch is determined by how many registers have to be saved and restored by the CPU. Perfor-
mance of a real-time kernel should not be judged by how many context switches the kernel is capable of
doing per second.

2.07 Kernels
The kernel is the part of a multitasking system responsible for management of tasks (i.e., for managing
the CPU’s time) and communication between tasks. The fundamental service provided by the kernel is
context switching. The use of a real-time kernel generally simplifies the design of systems by allowing
the application to be divided into multiple tasks that the kernel manages.

A kernel adds overhead to your system because the services provided by the kernel require execu-
tion time. The amount of overhead depends on how often you invoke these services. In a well-designed
application, a kernel uses between 2 and 5% of CPU time. Because a kernel is software that gets added

OSFlagPost()
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to your application, it requires extra ROM (code space) and additional RAM (data space) for the kernel
data structures, and each task requires its own stack space, which eats up RAM quickly. 

Single-chip microcontrollers are generally not able to run a real-time kernel because they have very
little RAM. A kernel allows you to make better use of your CPU by providing indispensable services,
such as semaphore management, mailboxes, queues, and time delays. After you design a system using a
real-time kernel, you will not want to go back to a foreground/background system.

2.08 Schedulers
The scheduler, also called the dispatcher, is the part of the kernel responsible for determining which
task runs next. Most real-time kernels are priority based. Each task is assigned a priority based on its
importance. The priority for each task is application specific. In a priority-based kernel, control of the
CPU is always given to the highest priority task ready to run. When the highest priority task gets the
CPU, however, is determined by the type of kernel used. Two types of priority-based kernels exist:
non-preemptive and preemptive.

2.09 Non-Preemptive Kernels
Non-preemptive kernels require that each task does something to explicitly give up control of the CPU.
To maintain the illusion of concurrency, this process must be done frequently. Non-preemptive schedul-
ing is also called cooperative multitasking; tasks cooperate with each other to share the CPU. Asynchro-
nous events are still handled by ISRs. An ISR can make a higher priority task ready to run, but the ISR
always returns to the interrupted task. The new higher priority task gains control of the CPU only when
the current task gives up the CPU.

One of the advantages of a non-preemptive kernel is that interrupt latency is typically low (see Sec-
tion 2.26, “Interrupt Latency”). At the task level, non-preemptive kernels can also use non-reentrant
functions (Section 2.11, “Reentrant Functions”). Non-reentrant functions can be used by each task with-
out fear of corruption by another task. This is because each task can run to completion before it relin-
quishes the CPU. However, non-reentrant functions should not be allowed to give up control of the
CPU.

Task-level response using a non-preemptive kernel can be much lower than with foreground/back-
ground systems because task-level response is now given by the time of the longest task.

Another advantage of non-preemptive kernels is the lesser need to guard shared data through the use
of semaphores. Each task owns the CPU, and you don’t have to fear that a task will be preempted. This
rule is not absolute, and, in some instances, semaphores should still be used. Shared I/O devices can still
require the use of mutual exclusion semaphores; for example, a task might still need exclusive access to
a printer.

The execution profile of a non-preemptive kernel is shown in Figure 2.4 and described as follows.
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Figure 2.4 Non-preemptive kernel.

F2.4(1) A task is executing but is interrupted. 

F2.4(2) If interrupts are enabled, the CPU vectors (jumps) to the ISR. 

F2.4(3) The ISR handles the event and makes a higher priority task ready to run. 

F2.4(4) Upon completion of the ISR, a Return From Interrupt instruction is executed, and the CPU
returns to the interrupted task. 

F2.4(5) The task code resumes at the instruction following the interrupted instruction. 

F2.4(6) When the task code completes, it calls a service that the kernel provides to relinquish the
CPU to another task. 

F2.4(7) The kernel sees that a higher priority task has been made ready to run (it doesn’t necessarily
know that it was from an ISR nor does it care), and thus the kernel performs a context switch
so that it can run (i.e., execute) the higher priority task to handle the event that the ISR sig-
naled.

The most important drawback of a non-preemptive kernel is responsiveness. A higher priority task
that has been made ready to run might have to wait a long time to run because the current task must give
up the CPU when it is ready to do so. As with background execution in foreground/background systems,
task-level response time in a non-preemptive kernel is nondeterministic; you never really know when
the highest priority task will get control of the CPU. It is up to your application to relinquish control of
the CPU.

To summarize, a non-preemptive kernel allows each task to run until it voluntarily gives up control
of the CPU. An interrupt preempts a task. Upon completion of the ISR, the ISR returns to the interrupted
task. Task-level response is much better than with a foreground/background system but is still nondeter-
ministic. Very few commercial kernels are non-preemptive.
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2.10 Preemptive Kernels
A preemptive kernel is used when system responsiveness is important; therefore, µC/OS-II and most
commercial real-time kernels are preemptive. The highest priority task ready to run is always given con-
trol of the CPU. When a task makes a higher priority task ready to run, the current task is preempted
(suspended), and the higher priority task is immediately given control of the CPU. If an ISR makes a
higher priority task ready, when the ISR completes, the interrupted task is suspended, and the new
higher priority task is resumed. 

The execution profile of a preemptive kernel is shown in Figure 2.5 and described as follows.

Figure 2.5 Preemptive kernel.

F2.5(1) A task is executing but is interrupted. 

F2.5(2) If interrupts are enabled, the CPU vectors (jumps) to the ISR. 

F2.5(3) The ISR handles the event and makes a higher priority task ready to run. Upon completion of
the ISR, a service provided by the kernel is invoked (i.e., a function that the kernel provides is
called).  

F2.5(4)

F2.5(5) This function knows that a more important task has been made ready to run, and thus, instead
of returning to the interrupted task, the kernel performs a context switch and executes the
code of the more important task. When the more important task is done, another function that
the kernel provides is called to put the task to sleep waiting for the event (i.e., the ISR) to
occur. 

F2.5(6)

F2.5(7) The kernel then sees that a lower priority task needs to execute, and another context switch is
done to resume execution of the interrupted task.
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With a preemptive kernel, execution of the highest priority task is deterministic; you can determine
when it will get control of the CPU. Task-level response time is thus minimized by using a preemptive
kernel.

Application code using a preemptive kernel should not use non-reentrant functions unless exclusive
access to these functions is ensured through the use of mutual exclusion semaphores, because both a
low and a high priority task can use a common function. Corruption of data can occur if the higher pri-
ority task preempts a lower priority task that is using the function.

To summarize, a preemptive kernel always executes the highest priority task that is ready to run. An
interrupt preempts a task. Upon completion of an ISR, the kernel resumes execution of the highest prior-
ity task ready to run (not “necessarily” the interrupted task). Task-level response is optimum and deter-
ministic. µC/OS-II is a preemptive kernel.

2.11 Reentrant Functions
A reentrant function can be used by more than one task without fear of data corruption. A reentrant
function can be interrupted at any time and resumed at a later time without loss of data. Reentrant func-
tions either use local variables (i.e., CPU registers or variables on the stack) or protect data when global
variables are used. An example of a reentrant function is shown in Listing 2.1.

Because copies of the arguments to strcpy() are placed on the task’s stack, strcpy() can be
invoked by multiple tasks without fear that the tasks will corrupt each other’s pointers.

An example of a non-reentrant function is shown in Listing 2.2. swap() is a simple function that
swaps the contents of its two arguments. For the sake of discussion, I assume that you are using a pre-
emptive kernel, that interrupts are enabled, and that Temp is declared as a global integer:

Listing 2.1 Reentrant function.
void strcpy(char *dest, char *src)

{

    while (*dest++ = *src++) {

        ;

    }

    *dest = NUL;

}

Listing 2.2 Non-reentrant function. 
int Temp;

void swap(int *x, int *y)

{

    Temp = *x;

    *x   = *y;

    *y   = Temp;

}
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The programmer intended to make swap() usable by any task. Figure 2.6 shows what could happen
if a low-priority task is interrupted while swap() is executing.

Figure 2.6 Non-reentrant function.

F2.6(1) When swap() is interrupted Temp contains 1.

F2.6(2)

F2.6(3) The ISR makes the higher priority task ready to run, so at the completion of the ISR, the ker-
nel (assuming µC/OS-II) is invoked to switch to this task. The high priority task sets Temp to
3 and swaps the contents of its variables correctly (i.e., z is 4 and t is 3).

F2.6(4) The high priority task eventually relinquishes control to the low priority task by calling a ker-
nel service to delay itself for one clock tick (Section 2.32, “Clock Tick”). 

F2.6(5) The lower priority task is thus resumed. Note that at this point, Temp is still set to 3! When the
low priority task resumes execution, the task sets y to 3 instead of 1.

Note that this example is simple, so it is obvious how to make the code reentrant. You can make
swap() reentrant with one of the following techniques:

• Declare Temp local to swap().

• Disable interrupts before the operation and enable them afterwards.

• Use a semaphore (Section 2.18, “Mutual Exclusion”).

• Other situations are not as easy to solve. An error caused by a non-reentrant function might not
show up in your application during the testing phase; it will most likely occur after the product
has been delivered! If you are new to multitasking, you need to be careful when using non-reen-
trant functions.

If the interrupt occurs either before or after swap(), the x and y values for both tasks are correct.

ISR O.S.

O.S.

HIGH PRIORITY TASK

while (1) {
   z = 3;
   t = 4;

   swap(&z, &t);
      {
         Temp = *z;
         *z   = *t;
         *t   = Temp;
      }
   .
   .
   OSTimeDly(1);
   .
   .
}

Temp == 3!

Temp == 1
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LOW PRIORITY TASK

while (1) {
   x = 1;
   y = 2;

   swap(&x, &y);
      {
          Temp = *x;

          *x   = *y;
          *y   = Temp;
      }
   .
   .
   OSTimeDly(1);
}

OSIntExit()
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2.12 Round-Robin Scheduling
When two or more tasks have the same priority, the kernel allows one task to run for a predetermined
amount of time, called a quantum, and then selects another task. This process is called round-robin
scheduling or time slicing. The kernel gives control to the next task in line if

• the current task has no work to do during its time slice or

• the current task completes before the end of its time slice or

• the time slice ends.

µC/OS-II does not currently support round-robin scheduling. Each task must have a unique priority in
your application.

2.13 Task Priorities
A priority is assigned to each task. The more important the task, the higher the priority given to it. With
most kernels, you are generally responsible for deciding what priority each task gets.

2.14 Static Priorities
Task priorities are static when the priority of each task does not change during the application’s execu-
tion. Each task is thus given a fixed priority at compile time. All the tasks and their timing constraints
are known at compile time in a system where priorities are static.

2.15 Dynamic Priorities
Task priorities are dynamic if the priority of tasks can be changed during the application’s execution;
each task can change its priority at run time. This is a desirable feature to have in a real-time kernel to
avoid priority inversions. µC/OS-II provides this feature.

2.16 Priority Inversions
Priority inversion is a problem in real-time systems and occurs mostly when you use a real-time kernel.
Figure 2.7 illustrates a priority inversion scenario. Task 1 has a higher priority than Task 2, which in turn
has a higher priority than Task 3.
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Figure 2.7 Priority inversion problem.

F2.7(1) Task 1 and Task 2 are both waiting for an event to occurs and Task 3 is executing. 

F2.7(2) At some point, Task 3 acquires a semaphore (see Section 2.18.04, “Semaphores”), which the
task needs before it can access a shared resource.

F2.7(3) Task 3 performs some operations on the acquired resource.

F2.7(4) The event for which Task 1 was waiting occurs, and thus the kernel suspends Task 3 and
starts executing Task 1 because Task 1 has a higher priority.

F2.7(5)

F2.7(6) Task 1 executes for a while until it also wants to access the resource (i.e., it attempts to get
the semaphore that Task 3 owns). Because Task 3 owns the resource, Task 1 is placed in a list
of tasks waiting for the kernel to free the semaphore.

F2.7(7)

F2.7(8) Task 3 resumes and continues execution until it is preempted by Task 2 because the event for
which Task 2 was waiting occurred.

F2.7(9)

F2.7(10) Task 2 handles the event for which it was waiting, and, when it’s done, the kernel relin-
quishes the CPU back to Task 3.
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F2.7(11)

F2.7(12) Task 3 finishes working with the resource and releases the semaphore. At this point, the ker-
nel knows that a higher priority task is waiting for the semaphore and performs a context
switch to resume Task 1. 

F2.7(13) At this point, Task 1 has the semaphore and can access the shared resource.

The priority of Task 1 has been virtually reduced to that of Task 3 because Task 1 was waiting for the
resource that Task 3 owned. The situation was aggravated when Task 2 preempted Task 3, which further
delayed the execution of Task 1.

You can correct this situation by raising the priority of Task 3, just for the time it takes to access the
resource, and then restoring the original priority level when the task is finished. The priority of Task 3
should be raised up to or above the highest priority of the other tasks competing for the resource. A
multitasking kernel should allow task priorities to change dynamically to help prevent priority inver-
sions. However, it takes some time to change a task’s priority. What if Task 3 had completed access of
the resource before it was preempted by Task 1 and then by Task 2? Had you raised the priority of Task
3 before accessing the resource and then lowered it when done, you would have wasted valuable CPU
time. What is really needed to avoid priority inversion is a kernel that changes the priority of a task auto-
matically, which is called priority inheritance. µC/OS-II provides this feature (see Chapter 8, “Mutual
Exclusion Semaphores”). 

Figure 2.8 illustrates what happens when a kernel supports priority inheritance.

Figure 2.8 Kernel that supports priority inheritance.
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F2.8(1)

F2.8(2) As with the previous example, Task 3 is running but, this time, acquires a mutual exclusion
semaphore (also called a mutex) to access a shared resource.

F2.8(3)

F2.8(4) Task 3 accesses the resource and then is preempted by Task 1.

F2.8(5)

F2.8(6) Task 1 executes and tries to obtain the mutex. The kernel sees that Task 3 has the mutex and
knows that Task 3 has a lower priority than Task 1. In this case, the kernel raises the priority
of Task 3 to the same level as Task 1.

F2.8(7) The kernel places Task 1 in the mutex wait list and then resumes execution of Task 3 so that
this task can continue with the resource. 

F2.8(8) When Task 3 is done with the resource, it releases the mutex. At this point, the kernel reduces
the priority of Task 3 to its original value and looks in the mutex waiting list to see if a task is
waiting for the mutex.  The kernel sees that Task 1 is waiting and gives it the mutex.

F2.8(9) Task 1 is now free to access the resource.

F2.8(10)

F2.8(11) When Task 1 is done executing, the medium priority task (i.e., Task 2) gets the CPU. Note
that Task 2 could have been ready to run any time between F2.8(3) and F2.8(10) without
affecting the outcome. Some level of priority inversion cannot be avoided but far less is
present than in the previous scenario.

2.17 Assigning Task Priorities
Assigning task priorities is not a trivial undertaking because of the complex nature of real-time systems.
In most systems, not all tasks are considered critical. Noncritical tasks should obviously be given low
priorities. Most real-time systems have a combination of soft and hard requirements. In a soft real-time
system, tasks are performed as quickly as possible, but they don’t have to finish by specific times. In
hard real-time systems, tasks have to be performed not only correctly but on time.

An interesting technique called rate monotonic scheduling (RMS) has been established to assign
task priorities based on how often tasks execute. Simply put, tasks with the highest rate of execution are
given the highest priority (Figure 2.9).

RMS makes a number of assumptions:

• All tasks are periodic (they occur at regular intervals).

• Tasks do not synchronize with one another, share resources, or exchange data.

• The CPU must always execute the highest priority task that is ready to run. In other words, pre-
emptive scheduling must be used.

Given a set of n tasks that are assigned RMS priorities, the basic RMS theorem states that all task
hard real-time deadlines are always met if the inequality in Equation [2.1] is verified.

[2.1]
Ei

T i
-----

i
∑ n 2

1 n⁄
1–( )≤
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Where Ei corresponds to the maximum execution time of task i and Ti corresponds to the execution
period of task i. In other words, Ei  / Ti corresponds to the fraction of CPU time required to execute task
i. Table 2.1 (page 50) shows the value for size n(21/n – 1) based on the number of tasks. The upper bound
for an infinite number of tasks is given by ln(2), or 0.693, which means that to meet all hard real-time
deadlines based on RMS, CPU use of all time-critical tasks should be less than 70 percent! Note that
you can still have non-time-critical tasks in a system and thus use 100 percent of the CPU’s time. Using
100 percent of your CPU’s time is not a desirable goal because it does not allow for code changes and
added features. As a rule of thumb, you should always design a system to use less than 60 to 70 percent
of your CPU.

RMS says that the highest rate task has the highest priority. In some cases, the highest rate task
might not be the most important task. Your application dictates how you need to assign priorities. How-
ever, RMS is an interesting starting point.

Figure 2.9 Assigning task priorities based on task execution rate.

2.18 Mutual Exclusion
The easiest way for tasks to communicate with each other is through shared data structures. This pro-
cess is especially easy when all tasks exist in a single address space and can reference elements, such as
global variables, pointers, buffers, linked lists, and ring buffers. Although sharing data simplifies the
exchange of information, you must ensure that each task has exclusive access to the data to avoid con-
tention and data corruption. The most common methods of obtaining exclusive access to shared
resources are

• disabling interrupts,

• performing test-and-set operations,

• disabling scheduling, and

• using semaphores.
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2.18.01 Disabling and Enabling Interrupts

The easiest and fastest way to gain exclusive access to a shared resource is by disabling and enabling
interrupts, as shown in the pseudocode in Listing 2.3.

µC/OS-II uses this technique (as do most, if not all, kernels) to access internal variables and data struc-
tures. In fact, µC/OS-II provides two macros that allow you to disable and then enable interrupts from
your C code: OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL(), respectively [see Section 3.00, “Criti-
cal Sections, OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL()”]. You always need to use these
macros in tandem, as shown in Listing 2.4.

Table 2.1 Allowable CPU use based 
on number of tasks.

Number of Tasks n(21/n - 1)
1 1.000

2 0.828

3 0.779

4 0.756

5 0.743

. .

. .

. .

_ 0.693

Listing 2.3 Disabling and enabling interrupts.
Disable interrupts;

Access the resource (read/write from/to variables);

Reenable interrupts;

Listing 2.4 Using µC/OS-II macros to disable and enable 
interrupts.

void Function (void)

{

    OS_ENTER_CRITICAL();

    .

    .    /* You can access shared data in here */

    .

    OS_EXIT_CRITICAL();

}
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You must be careful, however, not to disable interrupts for too long. Doing so affects the response of
your system to interrupts, which is known as interrupt latency. You should consider this method when
you are changing or copying a few variables. Also, this method is the only way that a task can share
variables or data structures with an ISR. In all cases, you should keep interrupts disabled for as little
time as possible.

If you use a kernel, you are basically allowed to disable interrupts for as much time as the kernel
does without affecting interrupt latency. Obviously, you need to know how long the kernel will disable
interrupts. Any good kernel vendor should provide you with this information. After all, if they sell a
real-time kernel, time is important!

2.18.02 Test-and-Set Operations

If you are not using a kernel, two functions could agree that to access a resource, they must check a glo-
bal variable and if the variable is 0, the function has access to the resource. To prevent the other function
from accessing the resource, however, the first function that gets the resource sets the variable to 1,
which is called a test-and-set (or TAS) operation. Either the TAS operation must be performed indivisi-
bly (by the processor), or you must disable interrupts when doing the TAS on the variable, as shown in
Listing 2.5.

Some processors actually implement a TAS operation in hardware (e.g., the 68000 family of processors
have the TAS instruction).

2.18.03 Disabling and Enabling the Scheduler

If your task is not sharing variables or data structures with an ISR, you can disable and enable sched-
uling (see Section 3.07, “Locking and Unlocking the Scheduler”), as shown in Listing 2.6 (using
µC/OS-II as an example). In this case, two or more tasks can share data without the possibility of
contention. You should note that while the scheduler is locked, interrupts are enabled, and, if an inter-
rupt occurs while in the critical section, the ISR is executed immediately. At the end of the ISR, the
kernel always returns to the interrupted task, even if the ISR has made a higher priority task ready to
run. Because the ISR returns to the interrupted task, the behavior of the kernel is very similar to that
of a non-preemptive kernel (at least, while the scheduler is locked). The scheduler is invoked when

Listing 2.5 Using test-and-set to access a resource.
Disable interrupts;

if (‘Access Variable’ is 0) {

    Set variable to 1;

    Reenable interrupts;

    Access the resource;

    Disable interrupts;

    Set the ‘Access Variable’ back to 0;

    Reenable interrupts;

} else {

    Reenable interrupts;

    /* You don’t have access to the resource, try back later; */

}
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OSSchedUnlock() is called to see if a higher priority task has been made ready to run by the task or
an ISR. A context switch results if a higher priority task is ready to run. Although this method works
well, you should avoid disabling the scheduler because it defeats the purpose of having a kernel in the
first place. The next method should be chosen instead.

2.18.04 Semaphores

The semaphore was invented by Edgser Dijkstra in the mid-1960s. It is a protocol mechanism offered
by most multitasking kernels. Semaphores are used to

• control access to a shared resource (mutual exclusion),

• signal the occurrence of an event, and

• allow two tasks to synchronize their activities.

A semaphore is a key that your code acquires in order to continue execution. If the semaphore is already
in use, the requesting task is suspended until the semaphore is released by its current owner. In other
words, the requesting task says: “Give me the key. If someone else is using it, I am willing to wait for
it!” Two types of semaphores exist: binary semaphores and counting semaphores. As its name implies, a
binary semaphore can only take two values: 0 or 1. A counting semaphore allows values between 0 and
255, 65,535, or 4,294,967,295, depending on whether the semaphore mechanism is implemented using
8, 16, or 32 bits, respectively. The actual size depends on the kernel used. Along with the semaphore’s
value, the kernel also needs to keep track of tasks waiting for the semaphore’s availability.

Generally, only three operations can be performed on a semaphore: INITIALIZE (also called CREATE),
WAIT (also called PEND), and SIGNAL (also called POST). The initial value of the semaphore must be pro-
vided when the semaphore is initialized. The waiting list of tasks is always initially empty.

A task desiring the semaphore performs a WAIT operation. If the semaphore is available (the sema-
phore value is greater than 0), the semaphore value is decremented, and the task continues execution. If
the semaphore’s value is 0, the task performing a WAIT on the semaphore is placed in a waiting list. Most
kernels allow you to specify a timeout; if the semaphore is not available within a certain amount of time,
the requesting task is made ready to run, and an error code (indicating that a timeout has occurred) is
returned to the caller.

A task releases a semaphore by performing a SIGNAL operation. If no task is waiting for the sema-
phore, the semaphore value is simply incremented. If any task is waiting for the semaphore, however,
one of the tasks is made ready to run, and the semaphore value is not incremented; the “key” is given to
one of the tasks waiting for it. Depending on the kernel, the task that receives the semaphore is either

Listing 2.6 Accessing shared data by disabling and enabling 
scheduling.

void Function (void)

{

    OSSchedLock();

    .

    .    /* You can access shared data in here (interrupts are recognized) */

    .

    OSSchedUnlock();

}
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• the highest priority task waiting for the semaphore or

• the first task that requested the semaphore (First In First Out, or FIFO).

Some kernels have an option that allows you to choose either method when the semaphore is initial-
ized. µC/OS-II only supports the first method. If the readied task has a higher priority than the current
task (the task releasing the semaphore), a context switch occurs (with a preemptive kernel), and the
higher priority task resumes execution; the current task is suspended until it again becomes the highest
priority task ready to run.

Listing 2.7 shows how you can share data using a semaphore (in µC/OS-II). Any task needing access
to the same shared data calls OSSemPend(), and, when the task is done with the data, the task calls
OSSemPost(). Both of these functions are described later. You should note that a semaphore is an object
that needs to be initialized before it’s used; for mutual exclusion, a semaphore is initialized to a value of
1. Using a semaphore to access shared data doesn’t affect interrupt latency. If an ISR or the current task
makes a higher priority task ready to run while accessing shared data, the higher priority task executes
immediately.

Semaphores are especially useful when tasks share I/O devices. Imagine what would happen if two
tasks were allowed to send characters to a printer at the same time. The printer would contain inter-
leaved data from each task. For instance, the printout from Task 1 printing “I am Task 1!” and Task 2
printing “I am Task 2!” could result in:

I Ia amm T Tasask k1 !2!

In this case, use a semaphore and initialize it to 1 (i.e., a binary semaphore). The rule is simple: to access
the printer, each task first must obtain the resource’s semaphore. Figure 2.10 shows tasks competing for
a semaphore to gain exclusive access to the printer. Note that the semaphore is represented symbolically
by a key, indicating that each task must obtain this key to use the printer.

Listing 2.7 Accessing shared data by obtaining a semaphore. 
OS_EVENT *SharedDataSem;

void Function (void)

{

    INT8U err;

    OSSemPend(SharedDataSem, 0, &err);

    .

    .    /* You can access shared data in here (interrupts are recognized) */

    .

    OSSemPost(SharedDataSem);

}
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Figure 2.10 Using a semaphore to get permission to access a printer.

The above example implies that each task must know about the existence of the semaphore in order
to access the resource. In some situations, it is better to encapsulate the semaphore. Each task would
thus not know that it is actually acquiring a semaphore when accessing the resource. For example, an
RS-232C port is used by multiple tasks to send commands and receive responses from a device con-
nected at the other end (Figure 2.11).

The function CommSendCmd() is called with three arguments: the ASCII string containing the com-
mand, a pointer to the response string from the device, and, finally, a timeout in case the device doesn’t
respond within a certain amount of time. The pseudocode for this function is shown in Listing 2.8.

Each task that needs to send a command to the device has to call this function. The semaphore is
assumed to be initialized to 1 (i.e., available) by the communication driver initialization routine. The
first task that calls CommSendCmd() acquires the semaphore, proceeds to send the command, and waits

Listing 2.8 Encapsulating a semaphore.
INT8U CommSendCmd(char *cmd, char *response, INT16U timeout)

{

    Acquire port's semaphore;

    Send command to device;

    Wait for response (with timeout);

    if (timed out) {

        Release semaphore;

        return (error code);

    } else {

        Release semaphore;

        return (no error);

    }

}

TASK 1

TASK 2

PRINTERSEMAPHORE

Acquire Semaphore

Acquire Semaphore

"I am task #2!"

"I am task #1!"
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for a response. If another task attempts to send a command while the port is busy, this second task is
suspended until the semaphore is released. The second task appears simply to have made a call to a nor-
mal function that does not return until the function has performed its duty. When the semaphore is
released by the first task, the second task acquires the semaphore and is allowed to use the RS-232C
port.

Figure 2.11 Hiding a semaphore from tasks.

A counting semaphore is used when a resource can be used by more than one task at the same time.
For example, a counting semaphore is used in the management of a buffer pool, as shown in Figure
2.12. Assume that the buffer pool initially contains 10 buffers. A task obtains a buffer from the buffer
manager by calling BufReq(). When the buffer is no longer needed, the task returns the buffer to the
buffer manager by calling BufRel(). The pseudocode for these functions is shown in Listing 2.9.

Listing 2.9 Buffer management using a semaphore. 
BUF *BufReq(void)

{

   BUF *ptr;

   Acquire a semaphore;

   Disable interrupts;

   ptr         = BufFreeList;

   BufFreeList = ptr->BufNext;

   Enable interrupts;

   return (ptr);

}

CommSendCmd()

CommSendCmd()

TASK1

TASK2

DRIVER RS-232C

Semaphore
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Figure 2.12 Using a counting semaphore.

The buffer manager satisfies the first 10 buffer requests because 10 keys exist. When all semaphores
are used, a task requesting a buffer is suspended until a semaphore becomes available. Interrupts are dis-
abled to gain exclusive access to the linked list (this operation is very quick). When a task is finished
with the buffer it acquired, the task calls BufRel() to return the buffer to the buffer manager; the buffer
is inserted into the linked list before the semaphore is released. By encapsulating the interface to the
buffer manager in BufReq() and BufRel(), the caller doesn’t need to be concerned with the actual
implementation details.

Semaphores are often overused. The use of a semaphore to access a simple shared variable is over-
kill in most situations. The overhead involved in acquiring and releasing the semaphore can consume
valuable time. You can do the job just as efficiently by disabling and enabling interrupts (see Section
2.18.01, “Disabling and Enabling Interrupts”). Suppose that two tasks are sharing a 32-bit integer vari-
able. The first task increments the variable while the other task clears it. If you consider how long a pro-
cessor takes to perform either operation, you should realize that you do not need a semaphore to gain

void BufRel(BUF *ptr)

{

   Disable interrupts;

   ptr->BufNext = BufFreeList;

   BufFreeList  = ptr;

   Enable interrupts;

   Release semaphore;

}

Listing 2.9 Buffer management using a semaphore. (Continued)

BufFreeList

Next Next Next 0

BufReq() BufRel()

Task 1 Task 2

10

Buffer Manager
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exclusive access to the variable. Each task simply needs to disable interrupts before performing its oper-
ation on the variable and enable interrupts when the operation is complete. A semaphore should be used,
however, if the variable is a floating-point variable and the microprocessor doesn’t support floating point
in the hardware. In this case, the processing time involved in processing the floating-point variable
could affect interrupt latency if you had disabled interrupts.

2.19 Deadlock (or Deadly Embrace)
A deadlock, also called a deadly embrace, is a situation in which two tasks are each unknowingly wait-
ing for resources held by the other. Assume Task T1 has exclusive access to Resource R1 and Task T2
has exclusive access to Resource R2. If T1 needs exclusive access to R2 and T2 needs exclusive access
to R1, neither task can continue. They are deadlocked. The simplest way to avoid a deadlock is for tasks
to

• acquire all resources before proceeding,

• acquire the resources in the same order, and

• release the resources in the reverse order.

Most kernels allow you to specify a timeout when acquiring a semaphore. This feature allows a
deadlock to be broken. If the semaphore is not available within a certain amount of time, the task
requesting the resource resumes execution. Some form of error code must be returned to the task to
notify it that a timeout occurred. A return error code prevents the task from thinking it has obtained the
resource. Deadlocks generally occur in large multitasking systems, not in embedded systems (at least
they better not!).

2.20 Synchronization
A task can be synchronized with an ISR (or another task when no data is being exchanged) by using a
semaphore, as shown in Figure 2.13. Note that, in this case, the semaphore is drawn as a flag to indicate
that it is used to signal the occurrence of an event (rather than to ensure mutual exclusion, in which case
it would be drawn as a key). When used as a synchronization mechanism, the semaphore is initialized to
0. Using a semaphore for this type of synchronization is called a unilateral rendezvous. For example, a
task can initiate an I/O operation and then wait for the semaphore. When the I/O operation is complete,
an ISR (or another task) signals the semaphore, and the task is resumed.

Figure 2.13 Synchronizing tasks and ISRs.

ISR TASKPOST PEND

TASKPOST PENDTASK
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If the kernel supports counting semaphores, the semaphore accumulates events that have not yet
been processed. Note that more than one task can be waiting for an event to occur. In this case, the ker-
nel signals the occurrence of the event either to

• the highest priority task waiting for the event to occur or

• the first task waiting for the event.

Depending on the application, more than one ISR or task can signal the occurrence of the event.
Two tasks can synchronize their activities by using two semaphores, as shown in Figure 2.14, which

is called a bilateral rendezvous. A bilateral rendezvous is similar to a unilateral rendezvous, except both
tasks must synchronize with one another before proceeding. A bilateral rendezvous cannot be per-
formed between a task and an ISR because an ISR cannot wait on a semaphore. For example, two tasks
are executing, as shown in Listing 2.10.

Figure 2.14 Tasks synchronizing their activities.  

Listing 2.10 Bilateral rendezvous. 
Task1()

{

    for (;;) {

        Perform operation;

        Signal task #2;                                                       (1)

        Wait for signal from task #2;                                         (2)

        Continue operation;

    }

}

Task2()

{

    for (;;) {

        Perform operation;

        Signal task #1;                                                        (3)

        Wait for signal from task #1;                                         (4)

        Continue operation;

    }

}

TASK

POST PEND

TASK

POSTPEND
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L2.10(1)

L2.10(2) When the first task reaches a certain point, it signals the second task and then waits for a
return signal. 

L2.10(3)

L2.10(4) Similarly, when the second task reaches a certain point, it signals the first task and waits for a
return signal. At this point, both tasks are synchronized with each other.

2.21 Event Flags
Event flags are used when a task needs to synchronize with the occurrence of multiple events. The task
can be synchronized when any of the events have occurred, which is called disjunctive synchronization
(logical OR). A task can also be synchronized when all events have occurred, which is called conjunctive
synchronization (logical AND). Disjunctive and conjunctive synchronization are shown in Figure 2.15.

Figure 2.15 Disjunctive and conjunctive synchronization.

Common events can be used to signal multiple tasks, as shown in Figure 2.16. Events are typically
grouped. Depending on the kernel, a group consists of 8, 16, or 32 events, each represented by a bit.
(mostly 32 bits, though). Tasks and ISRs can set or clear any event in a group. A task is resumed when
all the events it requires are satisfied. The evaluation of which task will be resumed is performed when a
new set of events occurs (i.e., during a SET operation).

Kernels, like µC/OS-II, which support event flags offer services to SET event flags, CLEAR event
flags, and WAIT for event flags (conjunctively or disjunctively).
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2.22 Intertask Communication
It is sometimes necessary for a task or an ISR to communicate information to another task. This infor-
mation transfer is called intertask communication. Information can be communicated between tasks in
two ways: through global data or by sending messages.

When using global variables, each task or ISR must ensure that it has exclusive access to the vari-
ables. If an ISR is involved, the only way to ensure exclusive access to the common variables is to dis-
able interrupts. If two tasks are sharing data, each can gain exclusive access to the variables either by
disabling and enabling interrupts or with the use of a semaphore (as we have seen). Note that a task can
only communicate information to an ISR by using global variables. A task is not aware when a global
variable is changed by an ISR, unless the ISR signals the task by using a semaphore or unless the task
polls the contents of the variable periodically. To correct this situation, you should consider using either
a message mailbox or a message queue.

Figure 2.16 Event flags.

2.23 Message Mailboxes
Messages can be sent to a task through kernel services. A message mailbox, also called a message
exchange, is typically a pointer-size variable. Through a service provided by the kernel, a task or an ISR
can deposit a message (the pointer) into this mailbox. Similarly, one or more tasks can receive messages
through a service provided by the kernel. Both the sender and receiving task agree on what the pointer is
actually pointing to.

A waiting list is associated with each mailbox in case more than one task wants to receive messages
through the mailbox. A task desiring a message from an empty mailbox is suspended and placed on the
waiting list until a message is received. Typically, the kernel allows the task waiting for a message to
specify a timeout. If a message is not received before the timeout expires, the requesting task is made
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ready to run, and an error code (indicating that a timeout has occurred) is returned to it. When a message
is deposited into the mailbox, either the highest priority task waiting for the message is given the mes-
sage (priority-based), or the first task to request a message is given the message (First-In First-Out, or
FIFO). µC/OS-II only supports the first mechanism – give the message to the highest priority task wait-
ing. Figure 2.17 shows a task depositing a message into a mailbox. Note that the mailbox is represented
by an I-beam and the timeout is represented by an hourglass. The number next to the hourglass repre-
sents the number of clock ticks (Section 2.32, “Clock Tick”) the task will wait for a message to arrive.

Figure 2.17 Message mailbox.

Kernels typically provide the following mailbox services.

• Initialize the contents of a mailbox. The mailbox initially might or might not contain a message.

• Deposit a message into the mailbox (POST).

• Wait for a message to be deposited into the mailbox (PEND).

• Get a message from a mailbox, if one is present, but do not suspend the caller if the mailbox is
empty (ACCEPT). If the mailbox contains a message, the message is extracted from the mailbox.

Message mailboxes can also simulate binary semaphores. A message in the mailbox indicates that the
resource is available, and an empty mailbox indicates that the resource is already in use by another task.

2.24 Message Queues
A message queue is used to send one or more messages to a task. A message queue is basically an array
of mailboxes. Through a service provided by the kernel, a task or an ISR can deposit a message (the
pointer) into a message queue. Similarly, one or more tasks can receive messages through a service pro-
vided by the kernel. Both the sender and receiving task or tasks have to agree as to what the pointer is
actually pointing to. Generally, the first message inserted in the queue is the first message extracted from
the queue (FIFO). In addition, to extract messages in a FIFO fashion, µC/OS-II allows a task to get mes-
sages Last-In-First-Out (LIFO).

As with the mailbox, a waiting list is associated with each message queue, in case more than one
task is to receive messages through the queue. A task desiring a message from an empty queue is sus-
pended and placed on the waiting list until a message is received. Typically, the kernel allows the task
waiting for a message to specify a timeout. If a message is not received before the timeout expires, the
requesting task is made ready to run, and an error code (indicating a timeout has occurred) is returned to
it. When a message is deposited into the queue, either the highest priority task, or the first task to wait
for the message is given the message. µC/OS-II only supports the first mechanism – give the message to
the highest priority task waiting. Figure 2.18 shows an ISR depositing a message into a queue. Note that
the queue is represented graphically by a double I-beam. The “10” indicates the number of messages
that can accumulate in the queue. A “0” next to the hourglass indicates that the task will wait forever for
a message to arrive.

TASKPOST PEND

Mailbox

10
TASK
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Figure 2.18 Message queue.

Kernels typically provide these message queue services:

• Initialize the queue. The queue is always assumed to be empty after initialization.

• Deposit a message into the queue (POST).

• Wait for a message to be deposited into the queue (PEND).

• Get a message from a queue, if one is present, but do not suspend the caller if the queue is empty
(ACCEPT). If the queue contains a message, the message is extracted from the queue.

2.25 Interrupts
An interrupt is a hardware mechanism used to inform the CPU that an asynchronous event has occurred.
When an interrupt is recognized, the CPU saves part (or all) of its context (i.e., registers) and jumps to a
special subroutine, called an interrupt service routine (ISR). The ISR processes the event, and, upon
completion of the ISR, the program returns to

• the background for a foreground/background system,

• the interrupted task for a non-preemptive kernel, or

• the highest priority task ready to run for a preemptive kernel.

Interrupts allow a microprocessor to process events when they occur, which prevents the micropro-
cessor from continuously polling (looking at) an event to see if it has occurred. Microprocessors allow
interrupts to be ignored and recognized through the use of two special instructions: disable interrupts
and enable interrupts, respectively. In a real-time environment, interrupts should be disabled as little as
possible. Disabling interrupts affects interrupt latency (see Section 2.26, “Interrupt Latency”) and can
cause interrupts to be missed. Processors generally allow interrupts to be nested, which means that
while servicing an interrupt, the processor recognizes and services other (more importantly) interrupts,
as shown in Figure 2.19.

2.26 Interrupt Latency
Probably the most important specification of a real-time kernel is the amount of time interrupts are dis-
abled. All real-time systems disable interrupts to manipulate critical sections of code and reenable inter-
rupts when the critical sections have been executed. The longer interrupts are disabled, the higher the
interrupt latency. Interrupt latency is given by Equation [2.2].

[2.2] Maximum amount of time interrupts are disabled
+ Time to start executing the first instruction in the ISR

TASKISR POST PEND

Queue

Interrupt
0

10
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Figure 2.19 Interrupt nesting.

2.27 Interrupt Response
Interrupt response is defined as the time between the reception of the interrupt and the start of the user
code that handles the interrupt. The interrupt response time accounts for all of the overhead involved in
handling an interrupt. Typically, the processor’s context (CPU registers) is saved on the stack before the
user code is executed.

For a foreground/background system, the user ISR code is executed immediately after saving the
processor’s context. The response time is given by Equation [2.3].

[2.3] Interrupt latency + Time to save the CPU’s context

For a non-preemptive kernel, the user ISR code is executed immediately after the processor’s con-
text is saved. The response time to an interrupt for a non-preemptive kernel is given by Equation [2.4].

[2.4] Interrupt latency + Time to save the CPU’s context

For a preemptive kernel, a special function provided by the kernel needs to be called to notify the
kernel that an ISR is starting. This function allows the kernel to keep track of interrupt nesting. The rea-
son this function is needed is explained in Section 2.28, “Interrupt Recovery”. For µC/OS-II, this func-
tion is called OSIntEnter(). The response time to an interrupt for a preemptive kernel is given by
Equation [2.5].

[2.5] Interrupt latency
+ Time to save the CPU’s context
+ Execution time of the kernel ISR entry function

TIME

TASK

ISR #1

ISR #2

ISR #3

Interrupt #1

Interrupt #2

Interrupt #3
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A system’s worst case interrupt response time is its only response. Your system might respond to
interrupts in 50µs 99 percent of the time, but, if it responds to interrupts in 250µs the other 1 percent,
you must assume a 250µs interrupt response time.

2.28 Interrupt Recovery
Interrupt recovery is defined as the time required for the processor to return to the interrupted code or to
a higher priority task, in the case of a preemptive kernel. Interrupt recovery in a foreground/background
system simply involves restoring the processor’s context and returning to the interrupted task. Interrupt
recovery is given by Equation [2.6].

[2.6] Time to restore the CPU’s context
+ Time to execute the return from interrupt instruction

As with a foreground/background system, interrupt recovery with a non-preemptive kernel (Equa-
tion [2.7]) simply involves restoring the processor’s context and returning to the interrupted task.

[2.7] Time to restore the CPU’s context
+ Time to execute the return from interrupt instruction

For a preemptive kernel, interrupt recovery is more complex. Typically, a function provided by the
kernel is called at the end of the ISR. For µC/OS-II, this function is called OSIntExit() and allows the
kernel to determine if all interrupts have nested. If they have nested (i.e., a return from interrupt would
return to task-level code), the kernel determines if a higher priority task has been made ready to run as a
result of the ISR. If a higher priority task is ready to run as a result of the ISR, this task is resumed. Note
that, in this case, the interrupted task resumes only when it again becomes the highest priority task ready
to run. For a preemptive kernel, interrupt recovery is given by Equation [2.8].

[2.8] Time to determine if a higher priority task is ready
+ Time to restore the CPU’s context of the highest priority task
+ Time to execute the return from interrupt instruction

2.29 Interrupt Latency, Response, and Recovery
Figure 2.20 through 2.22 show the interrupt latency, response, and recovery for a foreground/back-
ground system, a non-preemptive kernel, and a preemptive kernel, respectively.

You should note that for a preemptive kernel, the exit function decides to return either to the inter-
rupted task [F2.22(A)] or to a higher priority task that the ISR has made ready to run [F2.22(B)]. In the
later case, the execution time is slightly longer because the kernel has to perform a context switch. I
made the difference in execution time somewhat to scale, assuming µC/OS-II.
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Figure 2.20 Interrupt latency, response, and recovery 
(foreground/background).

Figure 2.21 Interrupt latency, response, and recovery 
(non-preemptive kernel).
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Figure 2.22 Interrupt latency, response, and recovery
(preemptive kernel).

2.30 ISR Processing Time
Although ISRs should be as short as possible, no absolute limits on the amount of time exist for an ISR.
One cannot say that an ISR must always be less than 100µs, 500µs, or 1ms. If the ISR code is the most
important code that needs to run at any given time, it could be as long as it needs to be. In most cases,
however, the ISR should recognize the interrupt, obtain data or a status from the interrupting device, and
signal a task to perform the actual processing. You should also consider whether the overhead involved
in signaling a task is more than the processing of the interrupt. Signaling a task from an ISR (i.e.,
through a semaphore, a mailbox, or a queue) requires some processing time. If processing your interrupt
requires less than the time required to signal a task, you should consider processing the interrupt in the
ISR itself and possibly enabling interrupts to allow higher priority interrupts to be recognized and ser-
viced.

2.31 Nonmaskable Interrupts
Sometimes, an interrupt must be serviced as quickly as possible and cannot afford to have the latency
imposed by a kernel. In these situations, you might be able to use the nonmaskable interrupt (NMI) pro-
vided on most microprocessors. Because the NMI cannot be disabled, interrupt latency, response, and
recovery are minimal. The NMI is generally reserved for drastic measures, such as saving important
information during a power down. If, however, your application doesn’t have this requirement, you
could use the NMI to service your most time-critical ISR. The following equations show how to deter-
mine the interrupt latency [2.9], response [2.10], and recovery [2.11], respectively, of an NMI.
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[2.9] Interrupt Latency = Time to execute longest instruction 
                                + Time to start executing the NMI ISR

[2.10] Interrupt Response = Interrupt latency 
                                   + Time to save the CPU’s context

[2.11] Interrupt Recovery = Time to restore the CPU’s context
                                   + Time to execute the return from interrupt instruction

I have used the NMI in an application to respond to an interrupt that could occur every 150µs. The
processing time of the ISR took from 80 to 125µs, and the kernel I used had an interrupt response of
about 45µs. As you can see, if I had used maskable interrupts, the ISR could have been late by 20µs
(125µs + 45µs > 150µs).

When you are servicing an NMI, you cannot use kernel services to signal a task because NMIs can-
not be disabled to access critical sections of code. However, you can still pass parameters to and from
the NMI. Parameters passed must be global variables, and the size of these variables must be read or
written indivisibly; that is, not as separate byte read or write instructions.

NMIs can be disabled by adding external circuitry, as shown in Figure 2.23. Assuming that both the
interrupt and the NMI are positive-going signals, a simple AND gate is inserted between the interrupt
source and the processor’s NMI input. Interrupts are disabled by writing a 0 to an output port. You
wouldn’t want to disable interrupts to use kernel services, but you could use this feature to pass parame-
ters (i.e., larger variables) to and from the ISR and a task.

Figure 2.23 Disabling nonmaskable interrupts.

Now, suppose that the NMI service routine needs to signal a task every 40 times it executes. If the
NMI occurs every 150µs, a signal would be required every 6ms (40 × 150µs). From a NMI ISR, you
cannot use the kernel to signal the task, but you can use the scheme shown in Figure 2.24. In this case,
the NMI service routine generates a hardware interrupt through an output port (i.e., brings an output
high). Because the NMI service routine typically has the highest priority and interrupt nesting is typi-
cally not allowed while servicing the NMI ISR, the interrupt is not recognized until the end of the NMI
service routine. At the completion of the NMI service routine, the processor is interrupted to service this
hardware interrupt. This ISR clears the interrupt source (i.e., brings the port output low) and posts to a
semaphore that wakes up the task. As long as the task services the semaphore well within 6ms, your
deadline is met.

To Processor's NMI Input
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Figure 2.24 Signaling a task from a nonmaskable interrupt.

2.32 Clock Tick
A clock tick is a special interrupt that occurs periodically. This interrupt can be viewed as the system’s
heartbeat. The time between interrupts is application specific and is generally between 10 and 200ms.
The clock tick interrupt allows a kernel to delay tasks for an integral number of clock ticks and to pro-
vide timeouts when tasks are waiting for events to occur. The faster the tick rate, the higher the overhead
imposed on the system.

All kernels allow tasks to be delayed for a certain number of clock ticks. The resolution of delayed
tasks is one clock tick; however, this does not mean that its accuracy is one clock tick.

Figure 2.25 through 2.27 are timing diagrams that show a task delaying itself for one clock tick. The
shaded areas indicate the execution time for each operation performed. Note that the time for each oper-
ation varies to reflect typical processing, which would include loops and conditional statements (i.e.,
if/else, switch, and ?:). The processing time of the tick ISR has been exaggerated to show that it too
is subject to varying execution times.

Case 1 (Figure 2.25) shows a situation where higher priority tasks and ISRs execute prior to the task,
which needs to delay for one tick. As you can see, the task attempts to delay for 20ms but because of its
priority, actually executes at varying intervals. The variables execution time causes the execution of the
task to jitter.

Figure 2.25 Delaying a task for one tick (Case 1).
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Case 2 (Figure 2.26) shows a situation where the execution times of all higher priority tasks and
ISRs are slightly less than one tick. If the task delays itself just before a clock tick, the task executes
again almost immediately! Because of this, if you need to delay a task at least one clock tick, you must
specify one extra tick. In other words, if you need to delay a task for at least five ticks, you must specify
six ticks!

Figure 2.26 Delaying a task for one tick (Case 2).

Case 3 (Figure 2.27) shows a situation in which the execution times of all higher priority tasks and
ISRs extend beyond one clock tick. In this case, the task that tries to delay for one tick actually executes
two ticks later and misses its deadline. Missing the deadline might be acceptable in some applications,
but in most cases it isn’t.

Figure 2.27 Delaying a task for one tick (Case 3).

These situations exist with all real-time kernels. They are related to CPU processing load and possi-
bly incorrect system design. Here are some possible solutions to these problems:

• Increase the clock rate of your microprocessor.

• Increase the time between tick interrupts.
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• Rearrange task priorities.

• Avoid using floating-point math (if you must, use single precision).

• Get a compiler that performs better code optimization.

• Write time-critical code in assembly language.

• If possible, upgrade to a faster microprocessor in the same family — that is, 8086 to 80186,
68000 to 68020, etc.

Regardless of what you do, jitter will always occur.

2.33 Memory Requirements
If you are designing a foreground/background system, the amount of memory required depends solely
on your application code.With a multitasking kernel, things are quite different. To begin with, a kernel
requires extra code space (ROM). The size of the kernel depends on many factors. Depending on the
features provided by the kernel, you can expect anywhere from 1 to 100K bytes. A minimal kernel for
an 8-bit CPU that provides only scheduling, context switching, semaphore management, delays, and
timeouts should require about 1 to 3K bytes of code space. The total code space is given by Equation
[2.12].

[2.12] Application code size + Kernel code size

Because each task runs independently of the others, it must be provided with its own stack area
(RAM). As a designer, you must determine the stack requirement of each task as closely as possible
(which is sometimes a difficult undertaking). The stack size must not only account for the task require-
ments (local variables, function calls, etc.), it must also account for maximum interrupt nesting (saved
registers, local storage in ISRs, etc.). Depending on the target processor and the kernel used, a separate
stack can be used to handle all interrupt-level code, which is a desirable feature because the stack
requirement for each task can be substantially reduced. Another desirable feature is the ability to specify
the stack size of each task on an individual basis (µC/OS-II permits this behavior). Conversely, some
kernels require that all task stacks be the same size. All kernels require extra RAM to maintain internal
variables, data structures, queues, etc. The total RAM required if the kernel does not support a separate
interrupt stack is given by Equation [2.13].

[2.13] Application code requirements
+ Data space (i.e., RAM) needed by the kernel itself
+ SUM(task stacks + MAX(ISR nesting))

If the kernel supports a separate stack for interrupts, the total RAM required is given by Equation [2.14].

[2.14] Application code requirements
+ Data space (i.e., RAM) needed by the kernel
+ SUM(task stacks)
+ MAX(ISR nesting)

Unless you have large amounts of RAM with which to work, you need to be careful how you use the
stack space. To reduce the amount of RAM needed in an application, you must be careful how you use
each task’s stack for

• large arrays and structures declared locally to functions and ISRs,

• function (i.e., subroutine) nesting,
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• interrupt nesting,

• library functions stack usage, and

• function calls with many arguments.

To summarize, a multitasking system requires more code space (ROM) and data space (RAM) than
a foreground/background system. The amount of extra ROM depends only on the size of the kernel, and
the amount of RAM mostly depends on the number of tasks in your system.

2.34 Advantages and Disadvantages of Real-Time 
Kernels

A real-time kernel, also called a Real-Time Operating System (RTOS), allows real-time applications to
be designed and expanded easily; functions can be added without requiring major changes to the soft-
ware. In fact, if you add low priority tasks to your system, the responsiveness of your system to high pri-
ority tasks is almost not affected! The use of an RTOS simplifies the design process by splitting the
application code into separate tasks. With a preemptive RTOS, all time-critical events are handled as
quickly and as efficiently as possible. An RTOS allows you to make better use of your resources by pro-
viding you with valuable services, such as semaphores, mailboxes, queues, time delays, and timeouts.

You should consider using a real-time kernel if your application can afford the extra requirements:
extra cost of the kernel, more ROM/RAM, and 2 to 4 percent additional CPU overhead.

The one factor I haven’t mentioned so far is the cost associated with the use of a real-time kernel. In
some applications, cost is everything and would preclude you from even considering an RTOS.

Currently about 150+ RTOS vendors exist. Products are available for 8-, 16-, 32-, and even 64-bit
microprocessors. Some of these packages are complete operating systems and include not only the
real-time kernel but also an input/output manager, windowing systems (display), a file system, network-
ing, language interface libraries, debuggers, and cross-platform compilers. The development cost to use
an RTOS varies from 70 USD (US Dollars) to well over 30,000 USD. The RTOS vendor might also
require royalties on a per-target-system basis. Royalties are like buying a chip from the RTOS vendor
that you include with each unit sold. The RTOS vendors call this silicon software. The royalty fee varies
between 5 USD to more than 500 USD per unit. µC/OS-II is not free software and needs to be licensed
for commercial use (see Appendix B, “Licensing Policy for µC/OS-II”). Like any other software pack-
age these days, you also need to consider the maintenance cost, which can set you back another 15% of
the development cost of the RTOS per year!

2.35 Real-Time Systems Summary
Table 2.2 summarizes the three types of real-time systems: foreground/background, non-preemptive
kernel, and preemptive kernel.    
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Table 2.2 Real-time systems summary. 

Foreground/
Background

Non-Preemptive 
Kernel

Preemptive Kernel

Interrupt 
latency 
(Time)

MAX(Longest instruc-
tion,
    User int. disable)
+ Vector to ISR

MAX(Longest instruc-
tion,
    User int. disable, 
    Kernel int. disable)
+ Vector to ISR

MAX(Longest instruction, 
    User int. disable, 
    Kernel int. disable)
+ Vector to ISR

Interrupt 
response 
(Time)

Int. latency
+ Save CPU’s context

Int. latency
+ Save CPU’s context

Interrupt latency
+ Save CPU’s context
+ Kernel ISR entry function

Interrupt 
recovery 
(Time)

Restore background’s
    context
+ Return from int.

Restore task’s context
+ Return from int.

Find highest priority task
+ Restore highest priority
    task’s context
+ Return from interrupt

Task 
response 
(Time)

Background Longest task
+ Find highest priority 
task
+ Context switch

Find highest priority task
+ Context switch

ROM size
Application code Application code

+ Kernel code
Application code
+ Kernel code

RAM size

Application RAM Application RAM
+ Kernel RAM
+ SUM(Task stacks
  + MAX(ISR stack))

Application RAM
+ Kernel RAM
+ SUM(Task stacks
  + MAX(ISR stack))

Services 
available?

Application code must
    provide

Yes Yes
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Chapter 3

Kernel Structure
This chapter describes some of the structural aspects of µC/OS-II. You will learn

• how µC/OS-II handles access to critical sections of code,

• what a task is

• how µC/OS-II knows about your tasks,

• how tasks are scheduled,

• how µC/OS-II determines the percent CPU your application is using,

• how to write interrupt service routines (ISR),

• what a clock tick is, how µC/OS-II handles them,

• how to initialize µC/OS-II, and

• how to start multitasking.

This chapter also describes the application services listed in Table 3.1. The code for OSSchedLock()
and OSSchedUnlock() can be disabled by setting OS_SCHED_LOCK_EN to 0 in OS_CFG.H, as shown in
Table 3.1. You should note that the other services cannot be compiled out because they are an integral
part of the core services offered by µC/OS-II.
 73
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Figure 3.1 shows the µC/OS-II architecture and its relationship with the hardware. When you use
µC/OS-II in an application, you are responsible for providing the application software and the
µC/OS-II configuration sections. This book and CD contain all the source code for the proces-
sor-independent code section, as well as the processor-specific code section for the Intel 80x86, real
mode, large model. If you intend to use µC/OS-II on a different processor, you need to either obtain a
copy of a port for the processor you intend to use or write one yourself if the desired processor port is
not available. Check the official µC/OS-II Web site at www.uCOS-II.com for a list of available ports.

3.00 Critical Sections, OS_ENTER_CRITICAL() and 
OS_EXIT_CRITICAL()

µC/OS-II, like all real-time kernels, needs to disable interrupts in order to access critical sections of
code and to reenable interrupts when done. Being able to disable interrupts allows µC/OS-II to protect
critical code from being entered simultaneously from either multiple tasks or ISRs. The interrupt disable
time is one of the most important specifications that a real-time kernel vendor can provide because it
affects the responsiveness of your system to real-time events. µC/OS-II tries to keep the interrupt disable
time to a minimum, but with µC/OS-II, interrupt disable time is largely dependent on the processor
architecture and the quality of the code generated by the compiler.

Processors generally provide instructions to disable/enable interrupts, and your C compiler must
have a mechanism to perform these operations directly from C. Some compilers allow you to insert
in-line assembly language statements into your C source code, which makes it quite easy to insert pro-
cessor instructions to enable and disable interrupts. Other compilers contain language extensions to
enable and disable interrupts directly from C.

To hide the implementation method chosen by the compiler manufacturer, µC/OS-II defines two
macros to disable and enable interrupts: OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL(), respec-
tively. Because these macros are processor specific, they are found in a file called OS_CPU.H. Each pro-
cessor port thus has its own OS_CPU.H file.

OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL() are always used together to wrap critical sections
of code as shown in the following segment:

Table 3.1 Core services configuration constants in 
OS_CFG.H. 

µC/OS-II Core Service Enabled when set to 1 in OS_CFG.H
OS_ENTER_CRITICAL()

OS_EXIT_CRITICAL()

OSInit()

OSStart()

OSIntEnter()

OSIntExit()

OSSchedLock() OS_SCHED_LOCK_EN

OSSchedUnlock() OS_SCHED_LOCK_EN

OSVersion()



Critical Sections, OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL() 75

3

Figure 3.1 µC/OS-II file structure.

Your application can also use OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL() to protect your
own critical sections of code. Be careful, however, because your application will crash (i.e., hang) if you
disable interrupts before calling a service such as OSTimeDly() (see Chapter 5). This problem happens
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because the task is suspended until time expires, but, because interrupts are disabled, you would never
service the tick interrupt! Obviously, all the PEND calls are also subject to this problem, so be careful. As
a general rule, you should always call µC/OS-II services with interrupts enabled!

OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL() can be implemented using three different meth-
ods.  The actual method used by your port depends on the capabilities of the processor, as well as the
compiler used (see Chapter 13, Porting µC/OS-II).  The method used is selected by the #define con-
stant OS_CRITICAL_METHOD, which is defined in OS_CPU.H of the port you are using for your applica-
tion (i.e., product).

OS_CRITICAL_METHOD == 1

The first and simplest way to implement these two macros is to invoke the processor instruction to dis-
able interrupts for OS_ENTER_CRITICAL() and to enable interrupts instruction for OS_EXIT_CRITICAL().
However, there is a little problem with this scenario. If you call a µC/OS-II function with interrupts dis-
abled, on return from a µC/OS-II service (i.e., function), interrupts are enabled! If you had disabled inter-
rupts prior to calling µC/OS-II, you might want them to be disabled on return from the µC/OS-II
function. In this case, this implementation is not adequate. However, with some processors/compilers,
this method is the only one you can use.

OS_CRITICAL_METHOD == 2

The second way to implement OS_ENTER_CRITICAL() is to save the interrupt disable status onto the
stack and then disable interrupts. OS_EXIT_CRITICAL() is simply implemented by restoring the inter-
rupt status from the stack. Using this scheme, if you call a µC/OS-II service with interrupts either
enabled or disabled, the status is preserved across the call. In other words, interrupts are enabled after
the call if they were enabled before the call, and interrupts are disabled after the call if they were dis-
abled before the call. Be careful when you call a µC/OS-II service with interrupts disabled because you
are extending the interrupt latency of your application. The pseudocode for these macros is:

Here, I’m assuming that your compiler allows you to execute in-line assembly language statements
directly from your C code, as shown above.  You need to consult your compiler documentation for this.

The PUSH PSW instruction pushes the processor status word (PSW) (also known as the condition code
register or processor flags) onto the stack. The DI instruction stands for disable interrupts. Finally, the
POP PSW instruction is assumed to restore the original state of the interrupt flag from the stack. The
instructions I use are only for illustration purposes and might not be actual processor instructions.

Some compilers do not optimize in-line code very well, and thus this method might not work
because the compiler might not be smart enough to know that the stack pointer was changed (by the
PUSH instruction).  Specifically, the processor you are using might provide a stack pointer relative
addressing mode, which the compiler can use to access local variables or function arguments using an
offset from the stack pointer.  Of course, if the stack pointer is changed by the OS_ENTER_CRITICAL()
macro, then all these stack offsets might be wrong and would most likely lead to incorrect behavior.

#define OS_ENTER_CRITICAL()   \

       asm(“ PUSH    PSW”)    \

       asm(“ DI”)

#define OS_EXIT_CRITICAL()    \

       asm(“ POP     PSW”)
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OS_CRITICAL_METHOD == 3

Some compilers provide you with extensions that allow you to obtain the current value of the processor
status word (PSW) and save it into a local variable declared within a C function.  The variable can then
be used to restore the PSW, as shown in Listing 3.1.

L3.1(1) OS_CPU_SR is a µC/OS-II data type that is declared in the processor-specific file OS_CPU.H. When
you select this critical section method, OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL(),
always assume the presence of the cpu_sr variable. In other words, if you use this method to pro-
tect your own critical sections, you need to declare a cpu_sr variable in your function.

L3.1(2) To enter a critical section, a function provided by the compiler vendor is called to obtain the
current state of the PSW (condition code register, processor flags, or whatever else this register
is called for your processor). I called this function get_processor_psw() for sake of discus-
sion, but it likely has a different name for your compiler.

L3.1(3) Another compiler-provided function (disable_interrupt()) is of course called to disable
interrupts.

L3.1(4) At this point, the critical code can execute.

L3.1(5) After the critical section has completed, interrupts can be reenabled by calling another com-
piler-specific extension that, for sake of discussion, I call set_processor_psw().  The func-
tion receives as an argument the previous state of the PSW.  It’s assumed that this function
restores the processor PSW to this value.

Listing 3.1 Saving and restoring the PSW. 
void Some_uCOS_II_Service (arguments)

{   

    OS_CPU_SR  cpu_sr;                                                        (1)

    

    

    .

    cpu_sr = get_processor_psw();                                             (2)

    disable_interrupts();                                                     (3)

    .

    /* Critical section of code */                                            (4)

    .

    set_processor_psw(cpu_sr);                                                (5)

    .

}
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Because I don’t know what the compiler functions are (there is no standard naming convention), the
µC/OS-II macros are used to encapsulate the functionality as shown:

3.01 Tasks
A task is typically an infinite loop function, as shown in Listing 3.2.  

L3.2(1) The return type must always be declared void. An argument is passed to your task code when
the task first starts executing. Notice that the argument is a pointer to a void, which allows
your application to pass just about any kind of data to your task. The pointer is a universal
vehicle used to pass your task the address of a variable, a structure, or even the address of a
function if necessary! It is possible (see Example #1 in Chapter 1) to create many identical
tasks, all using the same function (or task body). For example, you could have four asynchro-
nous serial ports that each are managed by their own task. However, the task code is actually
identical. Instead of copying the code four times, you can create a task that receives a pointer
to a data structure that defines the serial port’s parameters (for example, baud rate, I/O port
addresses, and interrupt vector number.) as an argument.

#define OS_ENTER_CRITICAL()           \

        cpu_sr = get_processor_psw(); \

        disable_interrupts();

#define OS_EXIT_CRITICAL()            \

        set_processor_psw(cpu_sr);

Listing 3.2 A task is an infinite loop. 
    void YourTask (void *pdata)                                               (1)

    {

       for (;;) {                                                             (2)

          /* USER CODE */

          Call one of uC/OS-II’s services:
          OSFlagPend();

          OSMboxPend();
          OSMutexPend();

          OSQPend();

          OSSemPend();

          OSTaskDel(OS_PRIO_SELF);

          OSTaskSuspend(OS_PRIO_SELF);

          OSTimeDly();

          OSTimeDlyHMSM();

          /* USER CODE */

       }

    }
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L3.2(2) You could also use a while (1) statement, if you prefer. A task looks just like any other C
function that containes a return type and an argument, but it never returns.

Alternatively, the task can delete itself upon completion, as shown in Listing 3.3. Note that the task
code is not actually deleted; µC/OS-II simply doesn’t know about the task anymore, so the task code
does not run. Also, if the task calls OSTaskDel(), the task never returns.

µC/OS-II can manage up to 64 tasks; however, the current version of µC/OS-II uses two tasks for sys-
tem use. I recommend that you don’t use priorities 0, 1, 2, 3, OS_LOWEST_PRIO-3, OS_LOWEST_PRIO-2,
OS_LOWEST_PRIO-1, and OS_LOWEST_PRIO because I might use them in future versions of µC/OS-II.
However, if you need to keep your application as tight as possible, then go ahead and use whatever priori-
ties you need, as long as you don’t use OS_LOWEST_PRIO.  OS_LOWEST_PRIO is a #define constant,
defined in the file OS_CFG.H. Therefore, you can have up to 63 of your own application tasks unless you
decide to not use the top and bottom four priorities as I recommend.  In this case, you “can” have up to 56
of your own tasks.

Each task must be assigned a unique priority level from 0 to OS_LOWEST_PRIO–2, inclusively. The
lower the priority number, the higher the priority of the task. µC/OS-II always executes the highest pri-
ority task ready to run. In the current version of µC/OS-II, the task priority number also serves as the
task identifier. The priority number (i.e., task identifier) is used by some kernel services, such as
OSTaskChangePrio() and OSTaskDel().

In order for µC/OS-II to manage your task, you must create a task by passing its address along with
other arguments to one of two functions: OSTaskCreate() or OSTaskCreateExt(). OSTaskCreateExt()
is an extended version of OSTaskCreate() and provides additional features. These two functions are
explained in Chapter 4, “Task Management.”

3.02 Task States
Figure 3.2 shows the state transition diagram for tasks under µC/OS-II. At any given time, a task can be
in any one of five states.

The TASK DORMANT state corresponds to a task that resides in program space (ROM or RAM) but has
not been made available to µC/OS-II. A task is made available to µC/OS-II by calling either OSTaskCre-
ate() or OSTaskCreateExt(). These calls are simply used to tell µC/OS-II the starting address of your
task, what priority you want to give to the task being created, how much stack space  your task uses, and
so on.  When a task is created, it is made ready to run and placed in the TASK READY state. Tasks can be
created before multitasking starts or dynamically by a running task. If multitasking has started and a
task created by another task has a higher priority than its creator, the created task is given control of the
CPU immediately. A task can return itself or another task to the dormant state by calling OSTaskDel().

Multitasking is started by calling OSStart(). OSStart() must only be called once during startup
and starts the highest priority task that has been created during your initialization code. The highest pri-

Listing 3.3 A task that deletes itself when done.
    void YourTask (void *pdata)

    {

       /* USER CODE */

       OSTaskDel(OS_PRIO_SELF);

    }



80 Chapter 3: Kernel Structure
ority task is thus placed in the TASK RUNNING state. Only one task can be running at any given time. A
ready task does not run until all higher priority tasks are either placed in the TASK WAITING state or are
deleted.

Figure 3.2 Task states.

The running task can delay itself for a certain amount of time by calling either OSTimeDly() or
OSTimeDlyHMSM(). This task would be placed in the TASK WAITING state until the time specified in the
call expires.  Both of these functions force an immediate context switch to the next highest priority task
that is ready to run. The delayed task is made ready to run by OSTimeTick() when the desired time
delay expires (see Section 3.11 “Clock Tick” on page 108). OSTimeTick() is an internal function to
µC/OS-II and thus, you don’t have to actually call this function from your code.

The running task may also need to wait until an event occurs by calling either OSFlagPend(),
OSSemPend(), OSMutexPend(), OSMboxPend(), or OSQPend(). If the event did not already occur, the
task that calls one of these functions is placed in the TASK WAITING state until the occurrence of the
event. When a task pends on an event, the next highest priority task is immediately given control of the
CPU. The task is made ready when the event occurs or when a timeout expires. The occurrence of an
event can be signaled by either another task or an ISR.

A running task can always be interrupted, unless the task or µC/OS-II disables interrupts as we have
seen. The task thus enters the ISR RUNNING state. When an interrupt occurs, execution of the task is sus-
pended, and the ISR takes control of the CPU. The ISR can make one or more tasks ready to run by sig-
naling one or more events. In this case, before returning from the ISR, µC/OS-II determines if the
interrupted task is still the highest priority task ready to run. If the ISR makes a higher priority task
ready to run, the new highest priority task is resumed; otherwise, the interrupted task is resumed.

When all tasks are waiting either for events or for time to expire, µC/OS-II executes an internal task
called the idle task, OS_TaskIdle().
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3.03 Task Control Blocks (OS_TCB)
When a task is created, it is assigned a task control block, OS_TCB (Listing 3.4). A task control block is a
data structure that is used by µC/OS-II to maintain the state of a task when it is preempted. When the
task regains control of the CPU, the task control block allows the task to resume execution exactly
where it left off. All OS_TCBs reside in RAM. You should notice that I organized its fields to allow for
data structure packing, while maintaining a logical grouping of members.

Listing 3.4 The µC/OS-II task control block. 
typedef struct os_tcb {

    OS_STK        *OSTCBStkPtr; 

#if OS_TASK_CREATE_EXT_EN > 0

    void          *OSTCBExtPtr; 

    OS_STK        *OSTCBStkBottom; 

    INT32U         OSTCBStkSize;  

    INT16U         OSTCBOpt;      

    INT16U         OSTCBId;       

#endif

    struct os_tcb *OSTCBNext;     

    struct os_tcb *OSTCBPrev;     

#if ((OS_Q_EN > 0) && (OS_MAX_QS > 0)) || (OS_MBOX_EN > 0) || (OS_SEM_EN > 0) || (OS_MUTEX_EN > 0)

    OS_EVENT      *OSTCBEventPtr; 

#endif

#if ((OS_Q_EN > 0) && (OS_MAX_QS > 0)) || (OS_MBOX_EN > 0)

    void          *OSTCBMsg;   

#endif

#if (OS_VERSION >= 251) && (OS_FLAG_EN > 0) && (OS_MAX_FLAGS > 0)

#if OS_TASK_DEL_EN > 0

    OS_FLAG_NODE  *OSTCBFlagNode;  

#endif    

    OS_FLAGS       OSTCBFlagsRdy;  

#endif

    INT16U         OSTCBDly;       

    INT8U          OSTCBStat;      

    INT8U          OSTCBPrio;      

    INT8U          OSTCBX;         

    INT8U          OSTCBY;         

    INT8U          OSTCBBitX;      
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.OSTCBStkPtr
contains a pointer to the current top-of-stack for the task. µC/OS-II allows each task to have its own
stack, but, just as importantly, each stack can be any size. Some commercial kernels assume that all
stacks are the same size unless you write complex hooks. This limitation wastes RAM when all
tasks have different stack requirements because the largest anticipated stack size has to be allocated
for all tasks. .OSTCBStkPtr should be the only field in the OS_TCB data structure that is accessed
from assembly language code (from the context-switching code). I decided to place .OSTCBStkPtr
as the first entry in the structure to make accessing this field easier from assembly language code (it
ought to be at offset zero).

.OSTCBExtPtr
is a pointer to a user-definable task control block extension, which allows you or the user of
µC/OS-II to extend the task control block without having to change the source code for µC/OS-II.
.OSTCBExtPtr is only used by OSTaskCreateExt(), so you need to set OS_TASK_CREATE_EXT_EN in
OS_CFG.H to 1 to enable this field. After it is enabled, you can use .OSTCBExtPtr to point to a data
structure that contains the name of the task, to keep track of the execution time of the task, or to
track the number of times a task has been switched-in (see Example #3 in Chapter 1). Notice that I
decided to place this pointer immediately after the stack pointer, in case you need to access this field
from assembly language. This position makes calculating the offset from the beginning of the data
structure easier.

.OSTCBStkBottom
is a pointer to the bottom of the task’s stack. If the processor’s stack grows from high to low memory
locations, then .OSTCBStkBottom points at the lowest valid memory location for the stack. Similarly,
if the processor’s stack grows from low to high memory locations, then .OSTCBStkBottom points at
the highest valid stack address. .OSTCBStkBottom is used by OSTaskStkChk() to check the size of a
task’s stack at run time, which allows you to determine the amount of free stack space available for
each stack. Stack checking can only occur if you create a task with OSTaskCreateExt(), so you need
to set OS_TASK_CREATE_EXT_EN in OS_CFG.H to 1 to enable this field.

.OSTCBStkSize
holds the size of the stack in number of elements instead of bytes (OS_STK is declared in OS_CPU.H),
which means that if a stack contains 1,000 entries and each entry is 32-bits wide, then the actual size
of the stack is 4,000 bytes. Similarly, a stack where entries are 16-bits wide contains 2,000 bytes for
the same 1,000 entries. .OSTCBStkSize is used by OSTaskStkChk(). Again, this field is valid only if
you set OS_TASK_CREATE_EXT_EN in OS_CFG.H to 1.

.OSTCBOpt
holds options that can be passed to OSTaskCreateExt(), so this field is valid only if you set
OS_TASK_CREATE_EXT_EN in OS_CFG.H to 1. µC/OS-II currently defines only three options (see
uCOS_II.H): OS_TASK_OPT_STK_CHK, OS_TASK_OPT_STK_CLR, and OS_TASK_OPT_SAVE_FP.

    INT8U          OSTCBBitY;      

#if OS_TASK_DEL_EN > 0

    BOOLEAN        OSTCBDelReq;    

#endif

} OS_TCB;

Listing 3.4 The µC/OS-II task control block. (Continued)
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OS_TASK_OPT_STK_CHK is used to specify to OSTaskCreateExt() that stack checking is enabled for the
task being created. µC/OS-II does not automatically perform stack checking because I didn’t want to
use valuable CPU time unless you actually want to do stack checking.  Stack checking is performed by
your application code by calling OSTaskStkChk() (see Chapter 4, “Task Management”).

OS_TASK_OPT_STK_CLR indicates that the stack needs to be cleared (i.e., µC/OS-II writes zeros in
every location of the stack) when the task is created. The stack only needs to be cleared if you intend
to do stack checking. If you do not specify OS_TASK_OPT_STK_CLR and you then create and delete
tasks, stack checking reports incorrect stack usage. If you never delete a task after it’s created and
your startup code clears all RAM, you can save valuable execution time by not specifying this option.
Passing OS_TASK_OPT_STK_CLR increases the execution time of OSTaskCreateExt() because it clears
the contents of the stack. The larger your stack, the longer it takes. Again, stack checking is invoked
by your application code and not automatically by µC/OS-II.

OS_TASK_OPT_SAVE_FP tells OSTaskCreateExt() that the task will be doing floating-point computa-
tions. If the processor provides hardware-assisted floating-point capability, the floating-point registers
need to be saved for the task being created and during a context switch.

.OSTCBId
is used to hold an identifier for the task. This field is currently not used and has only been included
for future expansion.

.OSTCBNext and .OSTCBPrev
are used to doubly link OS_TCBs. OSTimeTick() uses the forward link (pointed to by .OSTCBNext)
chain of OS_TCBs to update the .OSTCBDly field for each task. The OS_TCB for each task is linked
(using both pointers) when the task is created, and the OS_TCB is removed from the list when the task
is deleted. A doubly-linked list permits an element in the chain to be quickly inserted or removed.

.OSTCBEventPtr
 is a pointer to an event control block and is described later (see Chapter 6, “Kernel Structure”).

.OSTCBMsg
is a pointer to a message that is sent to a task. The use of this field is described later (see Chapters 10
and 11).

.OSTCBFlagNode
is a pointer to an event flag node (see Chapter 9, “Event Flag Management”).  This field is only used
by OSTaskDel() when we delete a task that waits on an event flag group.  This field is present in the
OS_TCB only when OS_FLAG_EN in OS_CFG.H is set to 1.

.OSTCBFlagsRdy
contains the event flags that made the task ready to run when the task was waiting on an event flag
group (see Chapter 9, “Event Flag Management”).  This field is present in the OS_TCB only when
OS_FLAG_EN in OS_CFG.H is set to 1.

.OSTCBDly
is used when a task needs to be delayed for a certain number of clock ticks or a task needs to pend
for an event to occur with a timeout. In this case, this field contains the number of clock ticks the
task is allowed to wait for the event to occur. When this variable is 0, the task is not delayed or has
no timeout when waiting for an event.
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.OSTCBStat 
contains the state of the task. When .OSTCBStat is OS_STAT_READY, the task is ready to run. Other
values can be assigned by µC/OS-II to .OSTCBStat, and these values are described in uCOS_II.H
(see OS_STAT_???).

.OSTCBPrio
 contains the task priority. A high-priority task has a low .OSTCBPrio value (i.e., the lower the num-
ber, the higher the actual priority).

.OSTCBX, .OSTCBY, .OSTCBBitX, and .OSTCBBitY
are used to accelerate the process of making a task ready to run or to make a task wait for an event (to
avoid computing these values at run time). The values for these fields are computed when the task is
created or when the task’s priority is changed. The values are obtained as shown in Listing 3.5.     

.OSTCBDelReq
is a boolean used to indicate whether or not a task has requested that the current task be deleted. The
use of this field is described later (see Chapter 4, “Task Management”). This field is present in the
OS_TCB only when OS_TASK_DEL_EN in OS_CFG.H is set to 1.

You probably noticed that some of the fields in the OS_TCB structure are wrapped with conditional
compilation statements. This wrapping is done to allow you to reduce the amount of RAM needed by
µC/OS-II if you don’t need all the features that µC/OS-II provides.

The maximum number of tasks (OS_MAX_TASKS) that an application can have is specified in OS_
CFG.H and determines the number of OS_TCBs allocated for your application. You can reduce the
amount of RAM needed by setting OS_MAX_TASKS to the actual number of tasks needed in your appli-
cation. All OS_TCBs are placed in OSTCBTbl[]. Note that µC/OS-II allocates OS_N_SYS_TASKS (see
uCOS_II.H) extra OS_TCBs for internal use. Currently, an OS_TCB is used for the idle task, and another
is used for the statistic task (if OS_TASK_STAT_EN in OS_CFG.H is set to 1). When µC/OS-II is initial-
ized, all OS_TCBs in the table are linked in a singly linked list of free OS_TCBs, as shown in Figure 3.3.
When a task is created, the OS_TCB to which OSTCBFreeList points is assigned to the task, and
OSTCBFreeList is adjusted to point to the next OS_TCB in the chain. When a task is deleted, its OS_TCB
is returned to the list of free OS_TCBs.

Figure 3.3 List of free OS_TCBs.

Listing 3.5 Calculating OS_TCB members.
.OSTCBY = priority >> 3;

.OSTCBBitY = OSMapTbl[priority >> 3];

.OSTCBX = priority & 0x07;

.OSTCBBitX = OSMapTbl[priority & 0x07];

0OSTCBFreeList OSTCBNext OSTCBNext OSTCBNext OSTCBNext

OSTCBTbl[0] OSTCBTbl[1] OSTCBTbl[2]

OSTCBTbl[OS_MAX_TASKS+OS_N_SYS_TASKS-1]
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An OS_TCB is initialized by the function OS_TCBInit() (see Listing 3.6) when a task is created.
OS_TCBInit() is called by either OSTaskCreate() or OSTaskCreateExt() (see Chapter 4,“Task Man-
agement”).  OS_TCBInit() receives seven arguments:

prio is the task priority.
ptos is a pointer to the top of stack after the stack frame has been built by OSTaskStkInit()

(described in Chapter 13, “Porting µC/OS-II”) and is stored in the .OSTCBStkPtr
field of the OS_TCB.

pbos is a pointer to the stack bottom and is stored in the .OSTCBStkBottom field of the
OS_TCB.

id is the task identifier and is saved in the .OSTCBId field.
stk_size is the total size of the stack and is saved in the .OSTCBStkSize field of the OS_TCB.
pext is the value to place in the .OSTCBExtPtr field of the OS_TCB.
opt are the OS_TCB options and are saved in the .OSTCBOpt field.

Listing 3.6 OS_TCBInit(). 
INT8U OS_TCBInit (INT8U  prio,     OS_STK *ptos,   OS_STK *pbos, INT16U id,

                  INT32U stk_size, void   *pext,   INT16U  opt)

{

#if OS_CRITICAL_METHOD == 3         
    OS_CPU_SR  cpu_sr;
#endif    
    OS_TCB     *ptcb;

    OS_ENTER_CRITICAL();

    ptcb = OSTCBFreeList;                                                                      (1)

    if (ptcb != (OS_TCB *)0) {                                                                (2)

        OSTCBFreeList        = ptcb->OSTCBNext;

        OS_EXIT_CRITICAL();

        ptcb->OSTCBStkPtr    = ptos;                                                           (3)

        ptcb->OSTCBPrio      = (INT8U)prio;

        ptcb->OSTCBStat      = OS_STAT_RDY;

        ptcb->OSTCBDly       = 0;

#if OS_TASK_CREATE_EXT_EN > 0

        ptcb->OSTCBExtPtr    = pext;                                                          (4)

        ptcb->OSTCBStkSize   = stk_size;

        ptcb->OSTCBStkBottom = pbos;

        ptcb->OSTCBOpt       = opt;

        ptcb->OSTCBId        = id;

#else

        pext                 = pext;

        stk_size             = stk_size;

        pbos                 = pbos;

        opt                  = opt;

        id                   = id;

#endif
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L3.6(1) OS_TCBInit() first tries to obtain an OS_TCB from the OS_TCB pool.

#if OS_TASK_DEL_EN > 0

        ptcb->OSTCBDelReq    = OS_NO_ERR;                                                     (5)

#endif

        ptcb->OSTCBY         = prio >> 3;                                                     (6)

        ptcb->OSTCBBitY      = OSMapTbl[ptcb->OSTCBY];

        ptcb->OSTCBX         = prio & 0x07;

        ptcb->OSTCBBitX      = OSMapTbl[ptcb->OSTCBX];

#if     OS_EVENT_EN > 0

        ptcb->OSTCBEventPtr  = (OS_EVENT *)0;                                                 (7)

#endif

#if (OS_VERSION >= 251) && (OS_FLAG_EN > 0) && (OS_MAX_FLAGS > 0) && (OS_TASK_DEL_EN > 0)
        ptcb->OSTCBFlagNode  = (OS_FLAG_NODE *)0;                                              (8)
#endif

#if     OS_MBOX_EN || (OS_Q_EN && (OS_MAX_QS >= 2))

        ptcb->OSTCBMsg       = (void *)0;

#endif

#if OS_VERSION >= 204
        OSTCBInitHook(ptcb);                                                                   (9)
#endif    

        OSTaskCreateHook(ptcb);                                                              (10)

        OS_ENTER_CRITICAL();                                                                 (11)

        OSTCBPrioTbl[prio]   = ptcb;                                                         (12)

        ptcb->OSTCBNext      = OSTCBList;

        ptcb->OSTCBPrev      = (OS_TCB *)0;

        if (OSTCBList != (OS_TCB *)0) {

            OSTCBList->OSTCBPrev = ptcb;

        }

        OSTCBList               = ptcb;

        OSRdyGrp               |= ptcb->OSTCBBitY;                                           (13)

        OSRdyTbl[ptcb->OSTCBY] |= ptcb->OSTCBBitX;

        OS_EXIT_CRITICAL();

        return (OS_NO_ERR);                                                                   (14)

    }

    OS_EXIT_CRITICAL();

    return (OS_NO_MORE_TCB);

}

Listing 3.6 OS_TCBInit(). (Continued)
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L3.6(2)

L3.6(3) If the pool contains a free OS_TCB, it is initialized. Note that after an OS_TCB is allocated,
OS_TCBInit() can re-enable interrupts because at this point the creator of the task owns the
OS_TCB and it cannot be corrupted by another concurrent task creation. OS_TCBInit() can
thus proceed to initialize some of the OS_TCB fields with interrupts enabled.

L3.6(4) If you enabled code generation for OSTaskCreateExt() (OS_TASK_CREATE_EXT_EN is set to
1 in OS_CFG.H) then additional fields in OS_TCB are filled in.

L3.6(5) The presence of the flag .OSTCBDelReq in OS_TCB depends on whether OS_TASK_DEL_EN has
been enabled (see OS_CFG.H).  In other words, if you never intend to delete tasks, you can
save yourself the storage area of a BOOLEAN in every single OS_TCB.

L3.6(6) In order to save a bit of processing time during scheduling, OS_TCBInit() precalculates
some fields.  I decided to exchange execution time in favor of data space storage.

L3.6(7) If you don’t intend to use any semaphores, mutexes, message mailboxes, and message
queues in your application, then the field .OSTCBEventPtr in the OS_TCB is not be present.

L3.6(8) If you enabled event flags (i.e., you set OS_FLAGS_EN to 1 in OS_CFG.H), then the pointer to an
event flag node is intitialized to point to nothing because the task is not waiting for an event
flag, it’s only being created.

L3.6(9) In µC/OS-II V2.04, I added a call to a function that can be defined in the processor’s port file
— OSTCBInitHook().  This function allows you to add extensions to the OS_TCB.  For exam-
ple, you could initialize and store the contents of floating-point registers, MMU registers, or
anything else that can be associated with a task. However, you typically store this additional
information in memory that is allocated by your application. Note that interrupts are enabled
when OS_TCBInit() calls OSTCBInitHook().

L3.6(10) OS_TCBInit() then calls OSTaskCreateHook(), which is a user-specified function that
allows you to extend the functionality of OSTaskCreate() or OSTaskCreateExt().
OSTaskCreateHook() can be declared either in OS_CPU_C.C (if OS_CPU_HOOKS_EN is set to
1) or elsewhere (if OS_CPU_HOOKS_EN is set to 0). Note that interrupts are enabled when
OS_TCBInit() calls OSTaskCreateHook(). 

You should note that I could have called only one of the two hook functions: OSTCBInitHook()
or OSTaskCreateHook(). The reason there are two functions is to allow you to group (i.e.,
encapsulate) items that are tied with the OS_TCB in OSTCBInitHook() and other task-related
initialization in OSTaskCreateHook().

L3.6(11)

L3.6(12) OS_TCBInit() disables interrupts when it needs to insert the OS_TCB into the doubly linked
list of tasks that have been created. The list starts at OSTCBList, and the OS_TCB of a new task
is always inserted at the beginning of the list.

L3.6(13)

L3.6(14) Finally, the task is made ready to run, and OS_TCBInit() returns to its caller
[OSTaskCreate() or OSTaskCreateExt()] with a code indicating that an OS_TCB has been
allocated and initialized.
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3.04 Ready List
Each task is assigned a unique priority level between 0 and OS_LOWEST_PRIO, inclusive (see OS_CFG.H).
Task priority OS_LOWEST_PRIO is always assigned to the idle task when µC/OS-II is initialized. Note that
OS_MAX_TASKS and OS_LOWEST_PRIO are unrelated. You can have only 10 tasks in an application while
still having 32 priority levels (if you set OS_LOWEST_PRIO to 31).

Each task that is ready to run is placed in a ready list consisting of two variables, OSRdyGrp and
OSRdyTbl[]. Task priorities are grouped (eight tasks per group) in OSRdyGrp. Each bit in OSRdyGrp
indicates when a task in a group is ready to run. When a task is ready to run, it also sets its correspond-
ing bit in the ready table, OSRdyTbl[]. The relationship between OSRdyGrp and OSRdyTbl[] is shown in
Figure 3.4 and is given by the following rules:

Bit 0 in OSRdyGrp is 1 when any bit in OSRdyTbl[0] is 1.
Bit 1 in OSRdyGrp is 1 when any bit in OSRdyTbl[1] is 1.
Bit 2 in OSRdyGrp is 1 when any bit in OSRdyTbl[2] is 1.
Bit 3 in OSRdyGrp is 1 when any bit in OSRdyTbl[3] is 1.
Bit 4 in OSRdyGrp is 1 when any bit in OSRdyTbl[4] is 1.
Bit 5 in OSRdyGrp is 1 when any bit in OSRdyTbl[5] is 1.
Bit 6 in OSRdyGrp is 1 when any bit in OSRdyTbl[6] is 1.
Bit 7 in OSRdyGrp is 1 when any bit in OSRdyTbl[7] is 1.

The size of OSRdyTbl[] depends on OS_LOWEST_PRIO (see uCOS_II.H). This feature allows you to
reduce the amount of RAM (data space) needed by µC/OS-II when your application requires few task
priorities.

To determine which priority (and thus which task) will run next, the scheduler in µC/OS-II deter-
mines the lowest priority number that has its bit set in OSRdyTbl[]. 

The code in Listing 3.7 is used to place a task in the ready list. prio is the task’s priority.

As you can see from Figure 3.4, the lower three bits of the task’s priority are used to determine the
bit position in OSRdyTbl[], and the next three most significant bits are used to determine the index into
OSRdyTbl[]. Note that OSMapTbl[] (see OS_CORE.C) is in ROM and is used to equate an index from 0
to 7 to a bit mask, as shown in Table 3.2. 

Listing 3.7 Making a task ready to run. 
OSRdyGrp            |= OSMapTbl[prio >> 3];

OSRdyTbl[prio >> 3] |= OSMapTbl[prio & 0x07];
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Figure 3.4 The µC/OS-II ready list. 

Table 3.2 Contents of OSMapTbl[].

Index Bit Mask (Binary)
0 00000001

1 00000010

2 00000100

3 00001000

4 00010000

5 00100000

6 01000000
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2425262728293031

3233343536373839

4041424344454647
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A task is removed from the ready list by reversing the process using the code in Listing 3.8.

This code clears the ready bit of the task in OSRdyTbl[] and clears the bit in OSRdyGrp only if all
tasks in a group are not ready to run; that is, all bits in OSRdyTbl[prio >> 3] are 0. Another table
lookup is performed, rather than scanning through the table starting with OSRdyTbl[0], to find the high-
est priority task ready to run. OSUnMapTbl[256] is a priority resolution table (see OS_CORE.C). Eight
bits represent when tasks are ready in a group. The least significant bit has the highest priority. Using
this byte to index OSUnMapTbl[] returns the bit position of the highest priority bit set — a number
between 0 and 7. Determining the priority of the highest priority task ready to run is accomplished with
the code in Listing 3.9.

For example, as shown in Figure 3.5, if OSRdyGrp contains 01101000 (binary) or 0x68, then the table
lookup OSUnMapTbl[OSRdyGrp] yields a value of 3, which corresponds to bit 3 in OSRdyGrp. Note that
bit positions are assumed to start on the right with bit 0 being the rightmost bit. Similarly, if
OSRdyTbl[3] contains 11100100 (binary) or 0xE4, then OSUnMapTbl[OSRdyTbl[3]] results in a value
of 2 (bit 2). The task priority (prio) is then 26 (i.e., 3 × 8 + 2). Getting a pointer to the OS_TCB for the
corresponding task is done by indexing into OSTCBPrioTbl[] using the task’s priority.

3.05 Task Scheduling
µC/OS-II always executes the highest priority task ready to run. The determination of which task has the
highest priority, thus which task will be next to run, is determined by the scheduler. Task-level schedul-
ing is performed by OS_Sched(). ISR-level scheduling is handled by another function [OSIntExit()]
described later. The code for OS_Sched() is shown in Listing 3.10.  µC/OS-II task-scheduling time is
constant irrespective of the number of tasks created in an application.

Listing 3.8 Removing a task from the ready list.
if ((OSRdyTbl[prio >> 3] &= ~OSMapTbl[prio & 0x07]) == 0)

    OSRdyGrp &= ~OSMapTbl[prio >> 3];

Listing 3.9 Finding the highest priority task ready to run.
y    = OSUnMapTbl[OSRdyGrp];    /* Determine Y position in OSRdyTbl[]  */

x    = OSUnMapTbl[OSRdyTbl[y]]; /* Determine X position in OSRdyTbl[Y] */

prio = (y << 3) + x;
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Figure 3.5 Finding the highest priority task ready to run.

Listing 3.10 Task scheduler. 
void  OS_Sched (void)

{

#if OS_CRITICAL_METHOD == 3

    OS_CPU_SR  cpu_sr;

#endif    

    INT8U      y;

    OS_ENTER_CRITICAL();

    if ((OSIntNesting == 0) && (OSLockNesting == 0)) {                                  (1)

        y             = OSUnMapTbl[OSRdyGrp];                                           (2)

        OSPrioHighRdy = (INT8U)((y << 3) + OSUnMapTbl[OSRdyTbl[y]]);

        if (OSPrioHighRdy != OSPrioCur) {                                                (3)

            OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy];                                 (4)

            OSCtxSwCtr++;                                                               (5)

            OS_TASK_SW();                                                               (6)

        }

    }

    OS_EXIT_CRITICAL();

}

INT8U  const  OSUnMapTbl[] = {
    0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x00 to 0x0F                             */
    4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x10 to 0x1F                             */
    5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x20 to 0x2F                             */
    4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x30 to 0x3F                             */
    6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x40 to 0x4F                             */
    4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x50 to 0x5F                             */
    5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x60 to 0x6F                             */
    4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x70 to 0x7F                             */
    7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x80 to 0x8F                             */
    4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x90 to 0x9F                             */
    5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xA0 to 0xAF                             */
    4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xB0 to 0xBF                             */
    6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xC0 to 0xCF                             */
    4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xD0 to 0xDF                             */
    5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xE0 to 0xEF                             */
    4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0        /* 0xF0 to 0xFF                             */
};

OSRdyGrp contains 0x68

OSRdyTbl[3] contains 0xE4

 3 = OSUnMapTbl[ 0x68 ];
 2 = OSUnMapTbl[ 0xE4 ];
26 = ( 3 << 3) + 2; 



92 Chapter 3: Kernel Structure
L3.10(1) OS_Sched() exits if called from an ISR (i.e., OSIntNesting > 0) or if scheduling has been
disabled because your application called OSSchedLock() at least once (i.e., OSLockNesting
> 0).

L3.10(2) If OS_Sched() is not called from an ISR and the scheduler is enabled, then OS_Sched()
determines the priority of the highest priority task that is ready to run. A task that is ready to
run has its corresponding bit set in OSRdyTbl[].

L3.10(3) After the highest priority task has been found, OS_Sched() verifies that the highest priority task
is not the current task. Verification is done to avoid an unnecessary context switch, which would
be time consuming. Note that µC/OS (V1.xx) obtained OSTCBHighRdy (a pointer) and com-
pared it with OSTCBCur (another pointer). On 8- and some 16-bit processors, this operation was
relatively slow because a comparison was made of pointers instead of 8-bit integers as it is now
done in µC/OS-II. Also, there is no point in looking up OSTCBHighRdy in OSTCBPrioTbl[]
(see L3.10(4)) unless you actually need to do a context switch. The combination of comparing
8-bit values instead of pointers and looking up OSTCBHighRdy only when needed should make
µC/OS-II faster than µC/OS on 8- and some 16-bit processors.

L3.10(4) To perform a context switch, OSTCBHighRdy must point to the OS_TCB of the highest priority
task, which is done by indexing into OSTCBPrioTbl[], using OSPrioHighRdy.

L3.10(5) Next, the statistic counter OSCtxSwCtr (a 32-bit variable) is incremented to keep track of the
number of context switches. This counter serves no other purpose except that it allows you to
determine the number of context switches in one second.  Of course, do to this, you’d have to
save OSCtxSwCtr in another variable (for example, OSCtxSwCtrPerSec) every second and
then clear OSCtxSwCtr.

L3.10(6) Finally, the macro OS_TASK_SW() is invoked to do the actual context switch.

A context switch consists of saving the processor registers on the stack of the task being suspended
and restoring the registers of the higher priority task from its stack. In µC/OS-II, the stack frame for a
ready task always looks as if an interrupt has just occurred and all processor registers were saved onto
it. In other words, all that µC/OS-II has to do to run a ready task is restore all processor registers from
the task’s stack and execute a return from interrupt. To switch context, you implement OS_TASK_SW()
so that you simulate an interrupt. Most processors provide either a software interrupt or TRAP instruc-
tions to accomplish this switch. The interrupt service routine (ISR) or trap handler (also called the
exception handler) must vector to the assembly language function OSCtxSw(). OSCtxSw() expects to
have OSTCBHighRdy point to the OS_TCB of the task to be switched in and to have OSTCBCur point to the
OS_TCB of the task being suspended. Refer to Chapter 13, “Porting µC/OS-II,” for additional details on
OSCtxSw(). For now, you only need to know that OS_TASK_SW() suspends execution of the current task
and allows the CPU to resume execution of the more important task.

All of the code in OS_Sched() is considered a critical section. Interrupts are disabled to prevent
ISRs from setting the ready bit of one or more tasks during the process of finding the highest priority
task ready to run. Note that OS_Sched() could be written entirely in assembly language to reduce sched-
uling time. OS_Sched() was written in C for readability and portability and to minimize use of assembly
language.

3.06 Task Level Context Switch, OS_TASK_SW()
As we discussed in the previous section, after the scheduler has determined that a more important task
needs to run, OS_TASK_SW() is called to perform a context switch.  The context of a task is generally the
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contents of all of the CPU registers.  The context-switch code simply needs to save the register values of
the task being preempted and load into the CPU the values of the registers for the task to resume.

OS_TASK_SW() is a macro that normally invokes a microprocessor software interrupt because
µC/OS-II assumes that context switching will be done by interrupt-level code.  What µC/OS-II thus
needs is a processor instruction that behaves just like a hardware interrupt (thus the name software inter-
rupt). A macro is used to make µC/OS-II portable across multiple platforms by encapsulating the actual
processor-specific software interrupt mechanism. Chapter 13, “Porting µC/OS-II” discusses how to
implement OS_TASK_SW().

Figure 3.6 shows the state of some µC/OS-II variables and data structures just prior to calling
OS_TASK_SW().  For sake of discussion, I created a fictitious CPU containing seven registers:

A stack pointer (SP)
A program counter (PC)
A processor status word (PSW)
Four general purpose registers (R1, R2, R3, and R4)

Figure 3.6 µC/OS-II structures when OS_TASK_SW() is called.

F3.6(1) OSTCBCur points to the OS_TCB of the task being suspended (the low priority task).

F3.6(2) The CPU’s stack pointer (SP register) points to the current top-of-stack of the task being pre-
empted.

F3.6(3) OSTCBHighRdy points to the OS_TCB of the task that will execute after completing the context
switch.
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F3.6(4) The .OSTCBStkPtr field in the OS_TCB points to the top-of-stack of the task to resume.

F3.6(5) The stack of the task to resume contains the desired register values to load into the CPU.
These values could have been saved by a previous context switch, as we will see shortly.  For
the time being, let’s simply assume that they have the desired values.

Figure 3.7 shows the state of the variables and data structures after calling OS_TASK_SW() and after
saving the context of the task to suspend.

Figure 3.7 Saving the current task’s context.

F3.7(1) Calling OS_TASK_SW() invokes the software interrupt instruction, which forces the processor
to save the current value of the PSW and the PC onto the current task’s stack.  The processor
then vectors to the software interrupt handler, which is responsible for completing the
remaining steps of the context switch.

F3.7(2) The software interrupt handler starts by saving the general purpose registers, R1, R2, R3, and
R4, in this order.

F3.7(3) The stack pointer register is then saved into the current task’s OS_TCB.  At this point, both the
CPU’s SP register and OSTCBCur->OSTCBStkPtr are pointing to the same location into the
current task’s stack.

Figure 3.8 shows the state of the variables and data structures after executing the last part of the con-
text-switch code.
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Figure 3.8 Resuming the current task.

F3.8(1) Because the new current task is now the task being resumed, the context-switch code copies
OSTCBHighRdy to OSTCBCur.

F3.8(2) The stack pointer of the task to resume is extracted from the OS_TCB (from
OSTCBHighRdy->OSTCBStkPtr) and loaded into the CPU’s SP register. At this point, the SP
register points to the stack location containing the value of register R4.

F3.7(3) The general purpose registers are popped from the stack in the reverse order (R4, R3, R2, and
R1).

F3.8(4) The PC and PSW registers are loaded back into the CPU by executing a return from interrupt
instruction.  Because the PC is changed, code execution resumes at the point to which the PC
is pointing, which happens to be in the new task’s code.

The pseudocode for the context switch is shown in Listing 3.11.  OSCtxSw() is generally written in
assembly language because most C compilers cannot manipulate CPU registers directly from C. Chap-
ter 14, “80x86 Port; Real Mode, Large Model with Emulated Floating-Point Support” discusses how
OSCtxSw(), as well as other µC/OS-II functions, look on a real processor, the Intel 80x86.
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3.07 Locking and Unlocking the Scheduler
The OSSchedLock() function (Listing 3.12) is used to prevent task rescheduling until its counterpart,
OSSchedUnlock() (Listing 3.13), is called. The task that calls OSSchedLock() keeps control of the
CPU even though other higher priority tasks are ready to run. Interrupts, however, are still recognized
and serviced (assuming interrupts are enabled). OSSchedLock() and OSSchedUnlock() must be used
in pairs. The variable OSLockNesting keeps track of the number of times OSSchedLock() has been
called. Nested functions can thus contain critical code that other tasks cannot access. µC/OS-II allows
nesting up to 255 levels deep. Scheduling is re-enabled when OSLockNesting is 0. OSSchedLock()
and OSSchedUnlock() must be used with caution because they affect the normal management of tasks
by µC/OS-II.

L3.12(1) It only makes sense to lock the scheduler if multitasking has started (i.e., OSStart() was
called).

Listing 3.11 Context-switch pseudocode.
void  OSCtxSw (void)

{

    PUSH R1, R2, R3 and R4 onto the current stack;                 See F3.6(2)

    OSTCBCur->OSTCBStkPtr = SP;                                    See F3.6(3)

    OSTCBCur              = OSTCBHighRdy;                          See F3.7(1)

    SP                    = OSTCBHighRdy->OSTCBStkPtr;             See F3.7(2)

    POP R4, R3, R2 and R1 from the new stack;                      See F3.7(3)

    Execute a return from interrupt instruction;                   See F3.7(4)

}

Listing 3.12 Locking the scheduler.
void  OSSchedLock (void)

{

#if OS_CRITICAL_METHOD == 3

    OS_CPU_SR  cpu_sr;

#endif    

    

    

    if (OSRunning == TRUE) {                                                  (1)

        OS_ENTER_CRITICAL();

        if (OSLockNesting < 255) {                                            (2)

            OSLockNesting++;

        }

        OS_EXIT_CRITICAL();

    }

}
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L3.12(2) Before incrementing OSLockNesting, we need to make sure that we have not exceeded the
allowable number of nesting levels.

After calling OSSchedLock(), your application must not make any system calls that suspend execution
of the current task; that is, your application cannot call OSFlagPend(), OSMboxPend(), OSMutexPend(),
OSQPend(), OSSemPend(), OSTaskSuspend(OS_PRIO_SELF), OSTimeDly(), or OSTimeDlyHMSM() until
OSLockNesting returns to 0 because OSSchedLock() prevents other tasks from running and thus your
system will lock up.

You might want to disable the scheduler when a low-priority task needs to post messages to multiple
mailboxes, queues, or semaphores (see Chapter 6, “Event Control Blocks”) and you don’t want a higher
priority task to take control until all mailboxes, queues, and semaphores have been posted to.

L3.13(1) It only makes sense to unlock the scheduler if multitasking has started (i.e., OSStart() was
called).

L3.13(2) We make sure OSLockNesting is not already 0.  If it were, it would be an indication that you
called OSSchedUnlock() too many times. In other words, you would not have the same num-
ber of OSSchedLock() as OSSchedUnlock().

L3.13(3) OSLockNesting is decremented.

Listing 3.13 Unlocking the scheduler. 
void  OSSchedUnlock (void)

{

#if OS_CRITICAL_METHOD == 3                                

    OS_CPU_SR  cpu_sr;

#endif    

    

    

    if (OSRunning == TRUE) {                                                  (1)

        OS_ENTER_CRITICAL();

        if (OSLockNesting > 0) {                                              (2)

            OSLockNesting--;                                                  (3)

            if ((OSLockNesting == 0) && (OSIntNesting == 0)) {                (4)

                OS_EXIT_CRITICAL();

                OS_Sched();                                                   (5)

            } else {

                OS_EXIT_CRITICAL();

            }

        } else {

            OS_EXIT_CRITICAL();

        }

    }

}
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L3.13(4)

L3.13(5) We only want to allow the scheduler to execute when all nesting fuctions are complete.
OSSchedUnlock() is called from a task because events could have made higher priority
tasks ready to run while scheduling was locked.

3.08 Idle Task
µC/OS-II always creates a task (also called the idle task) that is executed when none of the other tasks
are ready to run. The idle task, OS_TaskIdle(), is always set to the lowest priority, OS_LOWEST_PRIO.
The code for the idle task is shown in Listing 3.14. The idle task can never be deleted by application
software.

L3.14(1) OS_TaskIdle() increments a 32-bit counter called OSIdleCtr, which is used by the statistics
task (see Section 3.09, “Statistics Task”) to determine the percentage of CPU time actually
being consumed by the application software.  Interrupts are disabled and then enabled around
the increment because on 8- and most 16-bit processors, a 32-bit increment requires multiple
instructions that must be protected from being accessed by higher priority tasks or ISRs.

L3.14(2) OS_TaskIdle() calls OSTaskIdleHook(), which is a function that you can write to do just
about anything you want.  You can use OSTaskIdleHook() to STOP the CPU so that it can
enter low-power mode.  This feature is useful when your application is battery powered.
OS_TaskIdle() must always be ready to run, so don’t call one of the PEND functions,
OSTimeDly???() functions, or OSTaskSuspend() from OSTaskIdleHook().

Listing 3.14 The µC/OS-II idle task.
void  OS_TaskIdle (void *pdata)

{

#if OS_CRITICAL_METHOD == 3                      

    OS_CPU_SR  cpu_sr;

#endif    

    

    

    pdata = pdata;                               

    for (;;) {

        OS_ENTER_CRITICAL();

        OSIdleCtr++;                                                          (1)

        OS_EXIT_CRITICAL();

        OSTaskIdleHook();                                                     (2)

    }

}
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3.09 Statistics Task
µC/OS-II contains a task that provides run-time statistics. This task is called OS_TaskStat() and is cre-
ated by µC/OS-II if you set the configuration constant OS_TASK_STAT_EN (see OS_CFG.H) to 1. When
enabled, OS_TaskStat() (see OS_CORE.C) executes every second and computes the percentage of CPU
usage. In other words, OS_TaskStat() tells you how much of the CPU time is used by your application,
as a percentage. This value is placed in the signed 8-bit integer variable, OSCPUUsage. The resolution of
OSCPUUsage is 1 percent.

If your application uses the statistic task, you must call OSStatInit() (see OS_CORE.C) from the
first and only task created in your application during initialization. In other words, your startup code
must create only one task before calling OSStart(). From this one task, you must call OSStatInit()
before you create your other application tasks. The single task that you create is, of course, allowed to
create other tasks, but only after calling OSStatInit(). The pseudocode in Listing 3.15 shows what
needs to be done.

Because your application must create only one task, TaskStart(), µC/OS-II has only three tasks
to manage when main() calls OSStart(): TaskStart(), OS_TaskIdle(), and OS_TaskStat().
Please note that you don’t have to call the startup task: TaskStart() — you can call it anything you
like. Your startup task has the highest priority because µC/OS-II sets the priority of the idle task to
OS_LOWEST_PRIO and the priority of the statistic task to OS_LOWEST_PRIO — 1 internally.

Figure 3.9 illustrates the flow of execution when initializing the statistic task.

Listing 3.15 Initializing the statistic task. 
void main (void)

{

    OSInit();                 /* Initialize uC/OS-II                        (1)*/

    /* Install uC/OS-II's context switch vector */

    /* Create your startup task (for sake of discussion, TaskStart())       (2)*/

    OSStart();                /* Start multitasking                         (3)*/

}

void TaskStart (void *pdata)

{

    /* Install and initialize µC/OS-II’s ticker                             (4)*/

    OSStatInit();             /* Initialize statistics task                 (5)*/

    /* Create your application task(s) */

    for (;;) {

        /* Code for TaskStart() goes here! */

    }

}
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Figure 3.9 Statistic task initialization. 

F3.9(1) The first function that you must call in µC/OS-II is OSInit(), which initializes µC/OS-II.

F3.9(2) Next, you need to install the interrupt vector that performs context switches. Note that on
some processors (specifically the Motorola 68HC11), you do not need to install a vector
because the vector is already resident in ROM.

F3.9(3) You must create TaskStart() by calling either OSTaskCreate() or OSTaskCreateExt().

F3.9(4) After you are ready to multitask, call OSStart(), which schedules TaskStart() for execu-
tion because it has the highest priority.

F3.9(5) TaskStart() is responsible for initializing and starting the ticker. You want to initialize the
ticker in the first task to execute because you don’t want to receive a tick interrupt until you
are actually multitasking.

F3.9(6) Next, TaskStart() calls OSStatInit(). OSStatInit() determines how high the idle
counter (OSIdleCtr) can count if no other task in the application is executing. A Pentium II
running at 333MHz increments this counter to a value of about 15,000,000. OSIdleCtr is
still far from wrapping around the 4,294,967,296 limit of a 32-bit value. At the rate processor
speeds are getting, it will not be too long before OSIdleCtr overflows.  If overflow becomes
a problem, you can always introduce some software delays in OSTaskIdleHook().  Because
OS_TaskIdle() really doesn’t execute any useful code, it’s OK to throw away CPU cycles.

F3.9(7) OSStatInit() starts off by calling OSTimeDly(), which puts TaskStart() to sleep for two
ticks. This action is done to synchronize OSStatInit() with the ticker. µC/OS-II then picks
the next highest priority task that is ready to run, which happens to be OS_TaskStat().

F3.9(8) The code for OS_TaskStat() is discussed later, but as a preview, the very first thing
OS_TaskStat() does is check to see if the flag OSStatRdy is set to FALSE and then
delays for two seconds if it is.

main()
{
   OSInit();   (1)
   Install context switch vector; (2)
   Create TaskStart(); (3)
   OSStart();

}

TaskStart()
{

   Init uC/OS-II's ticker; (5)
   OSStatInit():           (6)
      OSTimeDly(2);        (7)

      OSIdleCtr = 0;       (12)
      OSTimeDly(1 second); (13)

      OSIdleCtrMax = OSIdleCtr; (15)
      OSStatRdy    = TRUE;      (16)

   for (;;) {
      Task code;
   }
}

OS_TaskStat()
{

   while (OSStatRdy == FALSE) { (8)
      OSTimeDly(2 seconds);     (9)
   }

   for (;;) {
      Compute Statistics; (17)
   }
}

OS_TaskIdle()
{

   for (;;) {
      OSIdleCtr++; (10)
   }

   for (;;) {
      OSIdleCtr++; (14)
   }

Scheduler

Scheduler

Scheduler
After 2 ticks

After 1 second

Scheduler

Highest Priority OS_LOWEST_PRIOOS_LOWEST_PRIO - 1

2 ticks

1 second
2 seconds

(4)

(11)



Statistics Task 101

3

F3.9(9) It so happens that OSStatRdy is initialized to FALSE by OSInit(), so OS_TaskStat() in fact
puts itself to sleep for two seconds. This action causes a context switch to the only task that is
ready to run, OS_TaskIdle().

F3.9(10) The CPU stays in OS_TaskIdle() until the two ticks of TaskStart() expire.

F3.9(11)

F3.9(12) After two ticks, TaskStart() resumes execution in OSStatInit(), and OSIdleCtr is
cleared.

F3.9(13) Then, OSStatInit() delays itself for one full second. Because no other task is ready to run,
OS_TaskIdle() again gets control of the CPU.

F3.9(14) During that time, OSIdleCtr is continuously incremented.

F3.9(15) After one second, TaskStart() is resumed, still in OSStatInit(), and the value that
OSIdleCtr reached during that one second is saved in OSIdleCtrMax.

F3.9(16)

F3.9(17) OSStatInit() sets OSStatRdy to TRUE, which allows OS_TaskStat() to perform a CPU
usage computation after its delay of two seconds expires.

The code for OSStatInit() is shown in Listing 3.16.

Listing 3.16 Initializing the statistic task. 
void  OSStatInit (void)

{

#if OS_CRITICAL_METHOD == 3                      

    OS_CPU_SR  cpu_sr;

#endif    

    

    

    OSTimeDly(2);                                

    OS_ENTER_CRITICAL();

    OSIdleCtr    = 0L;                           

    OS_EXIT_CRITICAL();

    OSTimeDly(OS_TICKS_PER_SEC);                 

    OS_ENTER_CRITICAL();

    OSIdleCtrMax = OSIdleCtr;                    

    OSStatRdy    = TRUE;

    OS_EXIT_CRITICAL();

}
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The code for OS_TaskStat() is shown in Listing 3.17.

Listing 3.17 Statistics task. 
void  OS_TaskStat (void *pdata)

{

#if OS_CRITICAL_METHOD == 3                      

    OS_CPU_SR  cpu_sr;

#endif    

    INT32U     run;

    INT32U     max;

    INT8S      usage;

    pdata = pdata;                               

    while (OSStatRdy == FALSE) {                                              (1)

        OSTimeDly(2 * OS_TICKS_PER_SEC);         

    }

    max = OSIdleCtrMax / 100L;                                                (2)

    for (;;) {

        OS_ENTER_CRITICAL();

        OSIdleCtrRun = OSIdleCtr;                                             (3)

        run          = OSIdleCtr;

        OSIdleCtr    = 0L;                       

        OS_EXIT_CRITICAL();

        if (max > 0L) {

            usage = (INT8S)(100L - run / max);                                (4)

            if (usage >= 0) {                    

                OSCPUUsage = usage;

            } else {

                OSCPUUsage = 0;

            }

        } else {

            OSCPUUsage = 0;

            max        = OSIdleCtrMax / 100L;

        }

        OSTaskStatHook();                                                     (5)

        OSTimeDly(OS_TICKS_PER_SEC);             

    }

}
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L3.17(1) I’ve already discussed why OS_TaskStat()  has to wait for the flag OSStatRdy to be set to
TRUE in the previous paragraphs. The task code executes every second and basically deter-
mines how much CPU time is actually consumed by all the application tasks. When you
start adding application code, the idle task gets less of the processor’s time, and OSIdleCtr
is not allowed to count as high as it did when nothing else was running. Remember that
OSStatInit() saved this maximum value in OSIdleCtrMax.

L3.17(3) Every second, the value of the idle counter is copied into the global variable OSIdleCtrRun.
This variable thus holds the maximum value of the idle counter for the second that just
passed.  This value is not used anywhere else by µC/OS-II but can be monitored (and possi-
bly displayed) by your application.  The idle counter is then reset to 0 for the next measure-
ment.

L3.17(4) CPU use (Equation [3.1]) is stored in the variable OSCPUUsage

[3.1]

L3.17(2) Equation 3.1 needs to be re-written because OSIdleCtr / OSIdleCtrMax will always yield 0
because of the integer operation.  The new equation is

[3.2]

Multiplying OSIdleCtr by 100 limits the maximum value that OSIdleCtr can take, espe-
cially on fast processors.  In other words, in order for the multiplication of OSIdleCtr to not
overflow, OSIdleCtr must never be higher than 42,949,672!  With fast processors, it’s quite
likely that OSIdleCtr can reach this value.  To correct this potential problem, all we need to
do is divide OSIdleCtrMax by 100 instead as shown in Equation 3.3.

[3.3]

The local variable max is thus precomputed to hold OSIdleCtrMax, divided by 100.

L3.17(5) After the computation is performed, OS_TaskStat() calls OSTaskStatHook(), a user-defin-
able function that allows the statistic task to be expanded. Indeed, your application can com-
pute and display the total execution time of all tasks, the percentage of time actually
consumed by each task, and more (see Chapter 1,  Example #3).

3.10 Interrupts Under µC/OS-II
µC/OS-II requires that an interrupt service routine (ISR) be written in assembly language. However, if
your C compiler supports in-line assembly language, you can put the ISR code directly in a C source
file.

OSCPUUsage %( ) 100 1 OSIdleCtr
OSIdleCtrMax
---------------------------------------– 

 ×=

OSCPUUsage %( ) 100 100 O× SIdleCtr
OSIdleCtrMax

------------------------------------------– 
 =

OSCPUUsage %( ) 100 OSIdleCtr

OSIdleCtrMax
100

--------------------------------------- 
 
---------------------------------------------–

 
 
 
 
 

=
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The pseudocode for an ISR is shown in Listing 3.18.

L3.18(1) Your code should save all CPU registers onto the current task stack. Note that on some pro-
cessors, like the Motorola 68020 (and higher), a different stack is used when servicing an
interrupt. µC/OS-II can work with such processors as long as the registers are saved on the
interrupted task’s stack when a context switch occurs.

L3.18(2) µC/OS-II needs to know that you are servicing an ISR, so you need to either call OSIntEnter()
or increment the global variable OSIntNesting. OSIntNesting can be incremented directly.
Incrementing OSIntNesting directly is much faster than calling OSIntEnter() and is thus the
preferred way.

Certain processors, such as the Motorola 68020, allow interrupts to be nested even though
you are just starting to service an interrupt.  The beginning of the ISR needs to be different
for these processors.  I do not discuss this issue here but, it might be worthwhile for you to
download the CPU32 port from www.uCOS-II.com to see how to handle this situation.

L3.18(3)

L3.18(4) We check to see if this level is the first interrupt level, and, if it is, we immediately save the
stack pointer into the current task’s OS_TCB. You should note that I added these two lines of
code since µC/OS-II V2.04.  If you have a port that assumes µC/OS-II V2.04 or earlier, you
should simply add these two lines in all your ISRs.

L3.18(5) You must clear the interrupt source because you stand the chance of re-entering the ISR if
you decide to re-enable interrupts.

L3.18(6) You can re-enable interrupts if you want to allow interrupt nesting. µC/OS-II allows you to
nest interrupts because it keeps track of ISR nesting in OSIntNesting.

L3.18(7) After you have done the previous steps, you can start servicing the interrupting device. This
section is obviously application specific.

L3.18(8) The conclusion of the ISR is marked by calling OSIntExit(), which decrements the inter-
rupt nesting counter. When the nesting counter reaches 0, all nested interrupts are complete,
and µC/OS-II needs to determine whether a higher priority task has been awakened by the
ISR (or any other nested ISR). If a higher priority task is ready to run, µC/OS-II returns to the
higher priority task rather than to the interrupted task.

Listing 3.18 ISRs under µC/OS-II.
YourISR:

    Save all CPU registers;                                                   (1)

    Call OSIntEnter() or, increment OSIntNesting directly;                    (2)
    if (OSIntNesting == 1) {                                                  (3)
        OSTCBCur->OSTCBStkPtr = SP;                                           (4)
    }
    Clear interrupting device;                                                (5)
    Re-enable interrupts (optional)                                           (6)

    Execute user code to service ISR;                                         (7)

    Call OSIntExit();                                                         (8)

    Restore all CPU registers;                                                (9)

    Execute a return from interrupt instruction;                             (10)
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L3.18(9) If the interrupted task is still the most important task to run, OSIntExit() returns to the ISR.

L3.18(10) At that point, the saved registers are restored, and a return from interrupt instruction is exe-
cuted. Note that µC/OS-II returns to the interrupted task if scheduling has been disabled
(OSLockNesting > 0).

The previous description is further illustrated in Figure 3.10. 

Figure 3.10 Servicing an interrupt.

F3.10(1) The interrupt is received but is not recognized by the CPU, either because interrupts have
been disabled by µC/OS-II or your application or, because the CPU has not completed exe-
cuting the current instruction.

F3.10(2)

F3.10(3) After the CPU recognizes the interrupt, the CPU vectors (at least on most microprocessors)
to the ISR. 

F3.10(4) As described in Figure 3.10, the ISR saves the CPU registers (i.e., the CPU’s context). 

F3.10(5) After the CPU registers are saved, your ISR notifies µC/OS-II by calling OSIntEnter() or by
incrementing OSIntNesting.  You also need to save the stack pointer into the current task’s
OS_TCB.

F3.10(6) Your ISR code then executes. Your ISR should do as little work as possible and defer most of the
work at the task level. A task is notified of the ISR by calling OSFlagPost(), OSMboxPost(),

Interrupt Request

TASK TASK

Vectoring

Saving Context

Notify kernel:
OSIntEnter()  or,
OSIntNesting++ User ISR code

Notify kernel: OSIntExit()

Restore context

Notify kernel: OSIntExit()

Restore context

Return from interrupt

Return from interrupt

TASK

Interrupt Response

Interrupt Recovery

Interrupt Recovery

µC/OS-IIor your application
has interrupts disabled.

Time

ISR signals a task

No New HPT or,
OSLockNesting > 0

New HPT

Task Response

Task Response

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Note:
In (5), for a port done with the V2.51 algorithm, add:
  OSTCBCur->OSTCBStkPtr = SP
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OSQPost(), OSQPostFront(), or OSSemPost(). The receiving task might or might not be
pending at the event flag, mailbox, queue, or semaphore when the ISR occurs and the post is
made. 

F3.10(7) After the user ISR code has completed, you need to call OSIntExit(). As can be seen from
the timing diagram, OSIntExit() takes less time to return to the interrupted task when there
is no higher priority task (HPT) readied by the ISR. 

F3.10(8)

F3.10(9) In this case, the CPU registers are then simply restored and a return from interrupt instruction
is executed. 

F3.10(10) If the ISR makes a higher priority task ready to run, then OSIntExit() takes longer to exe-
cute because a context switch is now needed.

F3.10(11)

F3.10(12) The registers of the new task are restored, and a return from interrupt instruction is executed.

The code for OSIntEnter() is shown in Listing 3.19, and the code for OSIntExit() is shown in
Listing 3.20. Very little needs to be said about OSIntEnter().

Listing 3.19 Notify µC/OS-II about beginning an ISR.
void  OSIntEnter (void)

{

    if (OSRunning == TRUE) {

        if (OSIntNesting < 255) {

            OSIntNesting++;

        }

    }

}

Listing 3.20 Notify µC/OS-II about leaving an ISR. 
void  OSIntExit (void)

{

#if OS_CRITICAL_METHOD == 3                            

    OS_CPU_SR  cpu_sr;

#endif
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OSIntExit() looks strangely like OS_Sched() except for three differences:

L3.20(1) The interrupt-nesting counter is decremented in OSIntExit(), and rescheduling occurs when
both the interrupt-nesting counter and the lock-nesting counter (OSLockNesting) are 0.

L3.20(2) The Y index needed for OSRdyTbl[] is stored in the global variable OSIntExitY because
prior to µC/OS-II V2.51, OSIntCtxSw() needed to account for local variables and return
addresses.  As of µC/OS-II V2.51, OSIntCtxSw() doesn’t need to account for these. How-
ever, I decided to leave OSIntExitY as a global for backwards compatibility with previous
ports.

L3.20(3) If a context switch is needed, OSIntExit() calls OSIntCtxSw() instead of OS_TASK_SW(), as
it did in OS_Sched().

You need to call OSIntCtxSw(), instead of OS_TASK_SW(), because the ISR has already saved the
CPU registers onto the interrupted task and thus shouldn’t be saved again.  Implementation details about
OSIntCtxSw() are provided in Chapter 13, Porting µC/OS-II.

Some processors, such as the Motorola 68HC11, require that you implicitly re-enable interrupts in
order to allow nesting. This process can be used to your advantage. Indeed, if your ISR needs to be ser-
viced quickly and it doesn’t need to notify a task about itself, you don’t need to call OSIntEnter() (or
increment OSIntNesting) or OSIntExit(), as long as you don’t enable interrupts within the ISR. The
pseudocode in Listing 3.21 shows this situation. In this case, the only way a task and this ISR can com-
municate is through global variables.

    OS_ENTER_CRITICAL();

    if (OSRunning == TRUE) {

        if (OSIntNesting > 0) {                                                    (1)

            OSIntNesting--;

        }

        if ((OSIntNesting == 0) && (OSLockNesting == 0)) {           

            OSIntExitY    = OSUnMapTbl[OSRdyGrp];                             (2)

            OSPrioHighRdy = (INT8U)((OSIntExitY << 3) 

                          + OSUnMapTbl[OSRdyTbl[OSIntExitY]]);

            if (OSPrioHighRdy != OSPrioCur) {             

                OSTCBHighRdy  = OSTCBPrioTbl[OSPrioHighRdy];

                OSCtxSwCtr++;                              

                OSIntCtxSw();                                                 (3)

            }

        }

    }

    OS_EXIT_CRITICAL();

}

Listing 3.20 Notify µC/OS-II about leaving an ISR. (Continued)
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3.11 Clock Tick
µC/OS-II requires that you provide a periodic time source to keep track of time delays and timeouts. A
tick should occur between 10 and 100 times per second, or Hertz. The faster the tick rate, the more over-
head µC/OS-II imposes on the system. The actual frequency of the clock tick depends on the desired
tick resolution of your application. You can obtain a tick source either by dedicating a hardware timer or
by generating an interrupt from an AC power line (50/60Hz) signal.

You must enable ticker interrupts after multitasking has started, that is, after calling OSStart(). In
other words, you should initialize ticker interrupts in the first task that executes following a call to
OSStart(). A common mistake is to enable ticker interrupts after OSInit() and before OSStart(), as
shown in Listing 3.22. Potentially, the tick interrupt could be serviced before µC/OS-II starts the first
task. At this point, µC/OS-II is in an unknown state, so your application crashes.

The µC/OS-II clock tick is serviced by calling OSTimeTick() from a tick ISR. OSTimeTick() keeps
track of all of the task timers and timeouts. The tick ISR follows all the rules described in Section 3.10,
“Interrupts Under µC/OS-II”. The pseudocode for the tick ISR is shown in Listing 3.23. This code must
be written in assembly language because you cannot access CPU registers directly from C.  Because the
tick ISR is always needed, it is generally provided with a port.

Listing 3.21 ISRs on a Motorola 68HC11.
M68HC11_ISR:                  /* Fast ISR, MUST NOT enable interrupts */

    All register saved automatically by the CPU;

    Execute user code to service the interrupt;

    Execute a return from interrupt instruction;

Listing 3.22 Incorrect way to start the ticker.
void main(void)

{

    .

    .

    OSInit();                 /* Initialize _C/OS-II                           */

    .

    .

    /* Application initialization code ...                                     */

    /* ... Create at least one task by calling OSTaskCreate()                  */

    .

    .

    Enable TICKER interrupts; /* DO NOT DO THIS HERE!!!                          */

    .

    .

    OSStart();                /* Start multitasking                            */

}
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The code for OSTimeTick() is shown in Listing 3.24.

Listing 3.23 Pseudocode for tick ISR. 
void OSTickISR(void)

{

    Save processor registers;

    Call OSIntEnter() or increment OSIntNesting;
    if (OSIntNesting == 1) {
        OSTCBCur->OSTCBStkPtr = SP;
    }

    Call OSTimeTick();                                                        
    Clear interrupting device;
    Re-enable interrupts (optional);

    Call OSIntExit();

    Restore processor registers;

    Execute a return from interrupt instruction;

}

Listing 3.24 Service a tick, OSTimeTick(). 
void  OSTimeTick (void)

{

#if OS_CRITICAL_METHOD == 3                                

    OS_CPU_SR  cpu_sr;

#endif    

    OS_TCB    *ptcb;

    OSTimeTickHook();                                                                         (1)

#if OS_TIME_GET_SET_EN > 0   

    OS_ENTER_CRITICAL();                                   

    OSTime++;                                                                                  (2)

    OS_EXIT_CRITICAL();

#endif

    if (OSRunning == TRUE) {    

        ptcb = OSTCBList;                                                                     (3)

        while (ptcb->OSTCBPrio != OS_IDLE_PRIO) {                                             (4)

            OS_ENTER_CRITICAL();

            if (ptcb->OSTCBDly != 0) {                         

                if (--ptcb->OSTCBDly == 0) {                   

                    if ((ptcb->OSTCBStat & OS_STAT_SUSPEND) == 0x00) {                        (5)

                        OSRdyGrp               |= ptcb->OSTCBBitY;                            (6)

                        OSRdyTbl[ptcb->OSTCBY] |= ptcb->OSTCBBitX;

                    } else {                                       

                        ptcb->OSTCBDly = 1;                        
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L3.24(1) OSTimeTick() starts by calling the user-definable function OSTimeTickHook(), which can
be used to extend the functionality of OSTimeTick(). I decided to call OSTimeTickHook()
first to give your application a chance to do something as soon as the tick is serviced because
you may have some time-critical work to do. Most of the work done by OSTimeTick() basi-
cally consists of decrementing the .OSTCBDly field for each OS_TCB (if it’s nonzero).

L3.24(2) OSTimeTick() also accumulates the number of clock ticks since power-up in an unsigned
32-bit variable called OSTime. Note that I disable interrupts before incrementing OSTime
because on some processors, a 32-bit increment is likely to be done using multiple CPU
instructions.

L3.24(3)

L3.24(4) OSTimeTick() follows the chain of OS_TCB, starting at OSTCBList, until it reaches the idle
task. 

L3.24(6) When the .OSTCBDly field of a task’s OS_TCB is decremented to 0, the task is made ready to
run.

L3.24(5) The task is not readied, however, if it has been explicitly suspended by OSTaskSuspend().

The execution time of OSTimeTick() is directly proportional to the number of tasks created in an
application; however, execution time is still very deterministic.

If you don’t like to make ISRs any longer than they must be, OSTimeTick() can be called at the task
level, as shown in Listing 3.25. To do this, create a task that has a higher priority than all your other
application tasks. The tick ISR needs to signal this high-priority task by using either a semaphore or a
message mailbox.

                    }                                              

                }

            }

            ptcb = ptcb->OSTCBNext;                                

            OS_EXIT_CRITICAL();

        }

    }

}

Listing 3.25 Service a tick, TickTask().
void TickTask (void *pdata)

{

    pdata = pdata;

    for (;;) {

        OSMboxPend(...);    /* Wait for signal from Tick ISR */

        OSTimeTick();

        OS_Sched();

    }

}

Listing 3.24 Service a tick, OSTimeTick(). (Continued)
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You obviously need to create a mailbox (with contents initialized to NULL) that will be used to signal
the task that a tick interrupt has occurred (Listing 3.26).

3.12 µC/OS-II Initialization
A requirement of µC/OS-II is that you call OSInit() before you call any of µC/OS-II’s other services.
OSInit() initializes all µC/OS-II variables and data structures (see OS_CORE.C). OSInit() creates the
idle task OS_TaskIdle(), which is always ready to run. The priority of OS_TaskIdle() is always set
to OS_LOWEST_PRIO. If OS_TASK_STAT_EN and OS_TASK_CREATE_EXT_EN (see OS_CFG.H) are both set
to 1, OSInit() also creates the statistic task OS_TaskStat() and makes it ready to run. The priority of
OS_TaskStat() is always set to OS_LOWEST_PRIO-1.

Figure 3.11 shows the relationship between some µC/OS-II variables and data structures after calling
OSInit(). The illustration assumes that the following #define constants are set as follows in OS_CFG.H:

• OS_TASK_STAT_EN is set to 1,

• OS_FLAG_EN is set to 1,

• OS_LOWEST_PRIO is set to 63, and

• OS_MAX_TASKS is set to 62.

Listing 3.26 Service a tick, OSTickISR().
void OSTickISR(void)

{

    Save processor registers;

    Call OSIntEnter() or increment OSIntNesting;

    if (OSIntNesting == 1) {

        OSTCBCur->OSTCBStkPtr = SP;

    }

    Post a 'dummy' message (e.g. (void *)1) to the tick mailbox;

    Call OSIntExit();

    Restore processor registers;

    Execute a return from interrupt instruction;

}
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Figure 3.11 Variables and data structures after calling OSInit().
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F3.11(1) Notice that the task control blocks (OS_TCBs) of OS_TaskIdle() and OS_TaskStat() are
chained together in a doubly linked list.

F3.11(2) OSTCBList points to the beginning of this chain. When a task is created, it is always placed at
the beginning of the list. In other words, OSTCBList always points to the OS_TCB of the last
task created.

F3.11(3) Both ends of the doubly linked list point to NULL (i.e., 0).

F3.11(4) Because both tasks are ready to run, their corresponding bits in OSRdyTbl[] are set to 1.
Also, because the bits of both tasks are on the same row in OSRdyTbl[], only one bit in
OSRdyGrp is set to 1.

µC/OS-II also initializes five pools of free data structures, as shown in Figure 3.12. Each of these
pools is a singly linked list and allows µC/OS-II to obtain and return an element from and to a pool
quickly.

Figure 3.12 Free pools.

After OSInit() has been called, the OS_TCB pool contains OS_MAX_TASKS entries. The OS_EVENT
pool contains OS_MAX_EVENTS entries, the OS_Q pool contains OS_MAX_QS entries, the OS_FLAG_GRP pool
contains OS_MAX_FLAGS entries, and, finally, the OS_MEM pool contains OS_MAX_MEM_PART entries. Each
of the free pools are NULL-pointer terminated to indicate the end.  The pool is, of course, empty if any of
the list pointers point to NULL.  You define the size of these pools in OS_CFG.H.
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3.13 Starting µC/OS-II
You start multitasking by calling OSStart(). However, before you start µC/OS-II, you must create at
least one of your application tasks, as shown in Listing 3.27.

The code for OSStart() is shown in Listing 3.28.

L3.28(1) When called, OSStart() finds the OS_TCB (from the ready list) of the highest priority task
that you have created.

L3.28(2) Then, OSStart() calls OSStartHighRdy(), which is found in OS_CPU_A.ASM for the pro-
cessor being used (see Chapter 13, “Porting µC/OS-II”). Basically, OSStartHighRdy()
restores the CPU registers by popping them off the task’s stack and then executing a return

Listing 3.27 Initializing and starting µC/OS-II. 
void main (void)

{

    OSInit();           /* Initialize uC/OS-II                            */

    .

    .

    Create at least 1 task using either OSTaskCreate() or OSTaskCreateExt();

    .

    .

    OSStart();          /* Start multitasking!  OSStart() will not return */

}

Listing 3.28 Starting multitasking.
void OSStart (void)

{

    INT8U y;

    INT8U x;

    if (OSRunning == FALSE) {

        y             = OSUnMapTbl[OSRdyGrp];

        x             = OSUnMapTbl[OSRdyTbl[y]];

        OSPrioHighRdy = (INT8U)((y << 3) + x);

        OSPrioCur     = OSPrioHighRdy;

        OSTCBHighRdy  = OSTCBPrioTbl[OSPrioHighRdy];                          (1)

        OSTCBCur      = OSTCBHighRdy;

        OSStartHighRdy();                                                      (2)

    }

}
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from interrupt instruction, which forces the CPU to execute your task’s code. Note that
OSStartHighRdy() never returns to OSStart().

Figure 3.13 shows the contents of the variables and data structures after multitasking has started.
Here, I assume that the task you created has a priority of 6. Notice that OSTaskCtr indicates that three
tasks have been created: OSRunning is set to TRUE, indicating that multitasking has started; OSPrioCur
and OSPrioHighRdy contain the priority of your application task; and OSTCBCur and OSTCBHighRdy
both point to the OS_TCB of your task.

Figure 3.13 Variables and data structures after calling OSStart().
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3.14 Obtaining the Current µC/OS-II Version
You can obtain the current version of µC/OS-II from your application by calling OSVersion() (Listing
3.29). OSVersion() returns the version number, multiplied by 100. In other words, µC/OS-II version
2.52 is returned as 252.

To find out about the latest version of µC/OS-II and how to obtain an upgrade, you should check the
official µC/OS-II Web site at http://www.uCOS-II.com.

Listing 3.29 Getting the current µC/OS-II version.
INT16U OSVersion (void)

{

    return (OS_VERSION);

}



4

Chapter 4

Task Management
In the previous chapter, I specified that a task is either an infinite loop function or a function that deletes
itself when it is done executing. Note that the task code is not actually deleted — µC/OS-II simply
doesn’t know about the task anymore, so that code will not run. A task looks just like any other C func-
tion, containing a return type and an argument, but the task must never return. The return type of a task
must always be declared void. The functions described in this chapter are found in the file OS_TASK.C.
A task must have one of the two structures:

void YourTask (void *pdata) 

{ 

    for (;;) { 

        /* USER CODE */ 

        Call one of uC/OS-II's services:

            OSFlagPend();

            OSMboxPend();

            OSMutexPend();

            OSQPend();

            OSSemPend();

            OSTaskSuspend(OS_PRIO_SELF); 

            OSTimeDly();

            OSTimeDlyHMSM();

        /* USER CODE */

    } 

} 
 117
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or

This chapter describes the services that allow your application to create a task, delete a task, change
a task’s priority, suspend and resume a task, and obtain information about a task.

µC/OS-II can manage up to 64 tasks, although I recommend reserving the four highest priority tasks
and the four lowest priority tasks for future use by µC/OS-II. However, at this time, only two priority
levels are actually used by µC/OS-II, OS_LOWEST_PRIO and OS_LOWEST_PRIO-1 (see OS_CFG.H). This
leaves you with up to 56 application tasks. The lower the value of the priority, the higher the priority of
the task. In the current version of µC/OS-II, the task priority number also serves as the task identifier.

4.00 Creating a Task, OSTaskCreate()
In order for µC/OS-II to manage your task, you must create it. You create a task by passing its address and
other arguments to one of two functions: OSTaskCreate() or OSTaskCreateExt(). OSTaskCreate() is
backward compatible with µC/OS, and OSTaskCreateExt() is an extended version of
OSTaskCreate(), providing additional features. A task can be created using either function. A task can
be created prior to the start of multitasking or by another task. You must create at least one task before
you start multitasking [i.e., before you call OSStart()]. An ISR cannot create a task.

The code for OSTaskCreate() is shown in Listing 4.1. As can be seen, OSTaskCreate() requires
four arguments: task is a pointer to the task code, pdata is a pointer to an argument that is passed to
your task when it starts executing, ptos is a pointer to the top of the stack that is assigned to the task
(see Section 4.02, “Task Stacks”), and prio is the desired task priority.

void YourTask (void *pdata)

{ 

    /* USER CODE */ 

    OSTaskDel(OS_PRIO_SELF);

}

Listing 4.1 OSTaskCreate(). 
INT8U OSTaskCreate (void (*task)(void *pd), void *pdata, OS_STK *ptos, INT8U prio)

{
#if OS_CRITICAL_METHOD == 3
    OS_CPU_SR  cpu_sr;
#endif

    void      *psp;

    INT8U      err;

#if OS_ARG_CHK_EN > 0

    if (prio > OS_LOWEST_PRIO) {                                                               (1)

        return (OS_PRIO_INVALID);

    }
#endif

    OS_ENTER_CRITICAL();

    if (OSTCBPrioTbl[prio] == (OS_TCB *)0) {                                                   (2)
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L4.1(1) If the configuration constant OS_ARG_CHK_EN (see file OS_CFG.H) is set to 1, OSTaskCreate()
checks that the task priority is valid. The priority of a task must be a number between 0 and
OS_LOWEST_PRIO, inclusive. Please note that OS_LOWEST_PRIO is reserved by µC/OS-II’s idle
task. Don’t worry, your application can not call OSTaskCreate() and create a task at priority
OS_LOWEST_PRIO because the priority will have already been ‘reserved’ for the idle task by
OSInit().  If you try to, OSTaskCreate() returns OS_PRIO_EXIST.

L4.1(2) Next, OSTaskCreate() makes sure that a task has not already been created at the desired pri-
ority. With µC/OS-II, all tasks must have a unique priority.

L4.1(3) If the desired priority is free, µC/OS-II reserves the priority by placing a non-NULL pointer in
OSTCBPrioTbl[].

L4.1(4) This allows OSTaskCreate() to re-enable interrupts while the function sets up the rest of the
data structures for the task because no other concurrent calls to OSTaskCreate() can now
use this priority.

L4.1(5) OSTaskCreate() then calls OSTaskStkInit(), which is responsible for setting up the task
stack. This function is processor specific and is found in OS_CPU_C.C. Refer to Chapter 13,
“Porting µC/OS-II” for details on implementing OSTaskStkInit(). If you already have a
port of µC/OS-II for the processor you are intending to use, you don’t need to be concerned
about implementation details. OSTaskStkInit() returns the new top-of-stack (psp), which
will be saved in the task’s OS_TCB. You should note that the fourth argument (opt) to
OSTaskStkInit() is set to 0. Unlike OSTaskCreateExt(), however, OSTaskCreate() does
not support options, so no options are available to pass to OSTaskStkInit(). µC/OS-II sup-
ports processors that have stacks that grow either from high to low memory or from low to
high memory. When you call OSTaskCreate(), you must know how the stack grows (see

        OSTCBPrioTbl[prio] = (OS_TCB *)1;                                                      (3)

        OS_EXIT_CRITICAL();                                                                   (4)

        psp = (void *)OSTaskStkInit(task, pdata, ptos, 0);                                    (5)

        err = OS_TCBInit(prio, psp, (void *)0, 0, 0, (void *)0, 0);                           (6)

        if (err == OS_NO_ERR) {                                                               (7)

            OS_ENTER_CRITICAL();

            OSTaskCtr++;                                                                      (8)

            OS_EXIT_CRITICAL();

            if (OSRunning == TRUE) {                                                          (9)

                OS_Sched();                                                                  (10)

            }

        } else {

            OS_ENTER_CRITICAL();

            OSTCBPrioTbl[prio] = (OS_TCB *)0;                                                (11)

            OS_EXIT_CRITICAL();

        }

        return (err);

    OS_EXIT_CRITICAL();

    return (OS_PRIO_EXIST);

}

Listing 4.1 OSTaskCreate(). (Continued)
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OS_STACK_GROWTH in OS_CPU.H of the processor you are using) because you must pass the
task’s top-of-stack to OSTaskCreate(), which can be either the lowest or the highest mem-
ory location of the stack.

L4.1(6) After OSTaskStkInit() has completed setting up the stack, OSTaskCreate() calls
OS_TCBInit() to obtain and initialize an OS_TCB from the pool of free OS_TCBs. The
code for OS_TCBInit() was described in Section 3.03, “Task Control Blocks (OS_TCB)”
and is found in OS_CORE.C instead of OS_TASK.C.

L4.1(7)

L4.1(8) Upon return from OS_TCBInit(), OSTaskCreate() checks the return code and, upon suc-
cess, increments OSTaskCtr, which keeps track of the number of tasks created.

L4.1(11) If OS_TCBInit() failed, the priority level is relinquished by setting the entry in
OSTCBPrioTbl[prio] to 0.

L4.1(9)

L4.1(10) Finally, if OSTaskCreate() is called from a task (i.e., OSRunning is set to TRUE), the sched-
uler is called to determine whether the created task has a higher priority than its creator. Cre-
ating a higher priority task results in a context switch to the new task. If the task was created
before multitasking has started [i.e., you did not call OSStart() yet], the scheduler is not
called.

4.01 Creating a Task, OSTaskCreateExt()
Creating a task using OSTaskCreateExt() offers more flexibility but at the expense of additional over-
head. The code for OSTaskCreateExt() is shown in Listing 4.2.

As can be seen, OSTaskCreateExt() requires nine arguments! The first four arguments (task,
pdata, ptos, and prio) are exactly the same as in OSTaskCreate(), and they are located in the same
order. I created the function this way to make it easier to migrate your code to use OSTaskCreateExt().

id Establishes a unique identifier for the task being created. This argument has been
added for future expansion and is otherwise unused by µC/OS-II. This identifier
allows me to extend µC/OS-II beyond its limit of 64 tasks. For now, simply set the
task’s ID to the same value as the task’s priority.

pbos Is a pointer to the task’s bottom-of-stack. This argument is used to perform stack
checking.

stk_size Specifies the size of the stack in number of elements. For example, if a stack entry is
four bytes wide, then a stk_size of 1000 means that the stack has 4,000 bytes.
Again, this argument is used for stack checking.

pext Is a pointer to a user-supplied data area that can be used to extend the OS_TCB of the
task. For example, you can add a name to a task (see Example #3 in Chapter 1), stor-
age for the contents of floating-point registers (see Example #4 in Chapter 1) during
a context switch, a port address to trigger an oscilloscope during a context switch,
and more.

opt Specifies options to OSTaskCreateExt(). This argument specifies whether stack
checking is allowed, whether the stack will be cleared, and whether float-
ing-point operations are performed by the task, among others. uCOS_II.H con-
tains a list of available options (OS_TASK_OPT_STK_CHK, OS_TASK_OPT_STK_CLR,
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and OS_TASK_OPT_SAVE_FP). Each option consists of a bit. The option is selected
when the bit is set (simply OR the above OS_TASK_OPT_??? constants).

Listing 4.2 OSTaskCreateExt(). 
INT8U  OSTaskCreateExt (void   (*task)(void *pd),

                        void    *pdata,

                        OS_STK  *ptos,

                        INT8U    prio,

                        INT16U   id,

                        OS_STK  *pbos,

                        INT32U   stk_size,

                        void    *pext,

                        INT16U   opt)

{

#if OS_CRITICAL_METHOD == 3                  

    OS_CPU_SR  cpu_sr;

#endif

    OS_STK    *psp;

    INT8U      err;

#if OS_ARG_CHK_EN > 0

    if (prio > OS_LOWEST_PRIO) {                                              (1)

        return (OS_PRIO_INVALID);

    }

#endif

    OS_ENTER_CRITICAL();

    if (OSTCBPrioTbl[prio] == (OS_TCB *)0) {                                  (2)

        OSTCBPrioTbl[prio] = (OS_TCB *)1;                                     (3)

                                             

        OS_EXIT_CRITICAL();                                                   (4)

        if (((opt & OS_TASK_OPT_STK_CHK) != 0x0000) ||                        (5)

            ((opt & OS_TASK_OPT_STK_CLR) != 0x0000)) {   

            #if OS_STK_GROWTH == 1

            (void)memset(pbos, 0, stk_size * sizeof(OS_STK));

            #else

            (void)memset(ptos, 0, stk_size * sizeof(OS_STK));

            #endif

        }



122 Chapter 4: Task Management
L4.2(1) OSTaskCreateExt() starts by checking that the task priority is valid. The priority of a task must be
a number between 0 and OS_LOWEST_PRIO, inclusive. Please note again that OS_LOWEST_PRIO
is reserved by µC/OS-II’s idle task. Your application can not call OSTaskCreateExt() and create a
task at priority OS_LOWEST_PRIO because the priority will have already been ‘reserved’ for the idle
task by OSInit(). If you try, OSTaskCreateExt() returns OS_PRIO_EXIST.

L4.2(2) Next, OSTaskCreateExt() makes sure that a task has not already been created at the desired
priority. With µC/OS-II, all tasks must have a unique priority. 

L4.2(3) If the desired priority is free, then µC/OS-II reserves the priority by placing a non-NULL
pointer in OSTCBPrioTbl[]. 

L4.2(4) This allows OSTaskCreateExt() to re-enable interrupts while it sets up the rest of the data
structures for the task.

L4.2(5) In order to perform stack checking on a task (see Section 4.03 “Stack Checking,
OSTaskStkChk()” on page 125), you must set the OS_TASK_OPT_STK_CHK flag in the
opt argument. Also, stack checking requires that the stack contain zeros (i.e., it is
cleared) when the task is created. To specify that a task gets cleared when it is created, set
OS_TASK_OPT_STK_CLR in the opt argument. When both of these flags are set,
OSTaskCreateExt() clears the stack. Note that I used memset() because it’s an ANSI
standard function and should be optimized by the compiler vendor.

L4.2(6) OSTaskCreateExt() then calls OSTaskStkInit(), which is responsible for setting up the
task stack. This function is processor specific and is found in OS_CPU_C.C. Refer to Chapter
13, “Porting µC/OS-II”, for details on implementing OSTaskStkInit(). If you already have
a port of µC/OS-II for the processor you are intending to use, then you don’t need to be con-

        psp = (OS_STK *)OSTaskStkInit(task, pdata, ptos, opt);                (6)

        err = OS_TCBInit(prio, psp, pbos, id, stk_size, pext, opt);           (7)

        if (err == OS_NO_ERR) {                                               (8)

            OS_ENTER_CRITICAL();                                              (9)

            OSTaskCtr++;                                       

            OS_EXIT_CRITICAL();

            if (OSRunning == TRUE) {                                         (10)

                OS_Sched();                                                  (11)

            }

        } else {

            OS_ENTER_CRITICAL();

            OSTCBPrioTbl[prio] = (OS_TCB *)0;                                

            OS_EXIT_CRITICAL();

        }

        return (err);

    }

    OS_EXIT_CRITICAL();

    return (OS_PRIO_EXIST);

}

Listing 4.2 OSTaskCreateExt(). (Continued)
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cerned about implementation details. OSTaskStkInit() returns the new top-of-stack (psp)
which will be saved in the task’s OS_TCB.  µC/OS-II supports processors that have stacks that
grow either from high to low memory or from low to high memory (see Section 4.02). When
you call OSTaskCreateExt(), you must know how the stack grows (see OS_CPU.H of the pro-
cessor you are using) because you must pass the task’s top-of-stack, which can either be the
lowest memory location of the stack (when OS_STK_GROWTH is 0) or the highest memory
location of the stack (when OS_STK_GROWTH is 1), to OSTaskCreateExt().

L4.2(7) After OSTaskStkInit() has completed setting up the stack, OSTaskCreateExt() calls
OS_TCBInit() to obtain and initialize an OS_TCB from the pool of free OS_TCBs. The code
for OS_TCBInit() is described in Section 3.03, “Task Control Blocks (OS_TCB)”.

L4.2(8)

L4.2(9) Upon return from OS_TCBInit(), OSTaskCreateExt() checks the return code and, upon
success, increments OSTaskCtr, which keeps track of the number of tasks created.

L4.2(12) If OS_TCBInit() failed, the priority level is relinquished by setting the entry in
OSTCBPrioTbl[prio] to 0.

L4.2(10)

L4.2(11) Finally, if OSTaskCreateExt() is called after multitasking has started (i.e., OSRunning is set
to TRUE), the scheduler is called to determine whether the created task has a higher priority
than its creator. Creating a higher priority task results in a context switch to the new task. If
the task was created before multitasking started [i.e., you did not call OSStart() yet], the
scheduler is not called.

4.02 Task Stacks
Each task must have its own stack space. A stack must be declared as being of type OS_STK and must
consist of contiguous memory locations. You can allocate stack space either statically (at compile-time)
or dynamically (at run-time). A static stack declaration is shown in Listings 4.3 and 4.4. Either declara-
tion is made outside a function.

or

You can allocate stack space dynamically by using the C compiler’s malloc() function, as shown in
Listing 4.5. However, you must be careful with fragmentation. Specifically, if you create and delete
tasks, your memory allocator might not be able to return a stack for your task(s) because the heap even-
tually becomes fragmented.

Listing 4.3 Static stack.
static OS_STK  MyTaskStack[stack_size];

Listing 4.4 Static stack.
OS_STK  MyTaskStack[stack_size];
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Figure 4.1 Fragmentation.

F4.1(1) Figure 4.1 illustrates a heap containing 3KB of available memory that can be allocated with
malloc(). For the sake of discussion, you create three tasks (tasks A, B, and C), each requir-
ing 1KB.

F4.1(2) Assume that the first 1KB is given to task A, the second to task B, and the third to task C. 

F4.1(3) Your application then deletes task A and task C and relinquishes the memory to the heap
using free(). Your heap now has 2KB of memory free, but the memoy’s not contiguous,
which means that you cannot create another task (i.e., task D) that requires 2 KB because
your heap is fragmented. If, however, you never delete a task, the use of malloc() is per-
fectly acceptable.

Because µC/OS-II supports processors with stacks that grow either from high to low memory or
from low to high memory, you must know how the stack grows when you call either OSTaskCreate()
or OSTaskCreateExt() because you need to pass the task’s top-of-stack to these functions.  When
OS_STK_GROWTH is set to 0 in OS_CPU.H, you need to pass the lowest memory location of the stack to
the task create function, as shown in Listing 4.6.

Listing 4.5 Using malloc() to allocate stack space for a task.
OS_STK  *pstk;

pstk = (OS_STK *)malloc(stack_size);

if (pstk != (OS_STK *)0) {      /* Make sure malloc() has enough space */

    Create the task;

}

Listing 4.6 Stack grows from low to high memory.
OS_STK  TaskStk[TASK_STK_SIZE];

OSTaskCreate(task, pdata, &TaskStk[0], prio);

3KB
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(1KB)

B
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When OS_STK_GROWTH is set to 1 in OS_CPU.H, you need to pass the highest memory location of the
stack to the task create function, as shown in Listing 4.7.

This requirement affects code portability. If you need to port your code from a processor architecture
that supports a downward-growing stack to one that supports an upward-growing stack, you might need
to make your code handle both cases. Specifically, Listings 4.6 and 4.7 are rewritten, as shown in List-
ing 4.8.

The size of the stack needed by your task is application specific. When sizing the stack, however,
you must account for nesting of all the functions called by your task, the number of local variables that
will be allocated by all functions called by your task, and the stack requirements for all nested interrupt
service routines. In addition, your stack must be able to store all CPU registers.

4.03 Stack Checking, OSTaskStkChk()
Sometimes it is necessary to determine how much stack space a task actually uses. Stack checking
allows you to reduce the amount of RAM needed by your application code by not overallocating stack
space. µC/OS-II provides OSTaskStkChk(), which provides you with this valuable information.

In order to use the µC/OS-II stack-checking facilities, you must do the following:

• Set OS_TASK_CREATE_EXT to 1 in OS_CFG.H.

• Create a task using OSTaskCreateExt() and give the task much more space than you think it
really needs.  You can call OSTaskStkChk() for any task, from any task.

• Set the opt argument in OSTaskCreateExt() to OS_TASK_OPT_STK_CHK + OS_TASK_OPT_STK_CLR.
Note that if your startup code clears all RAM and you never delete tasks after they are created, you don’t
need to set the OS_TASK_OPT_STK_CLR option. Not setting the option reduces the execution time of
OSTaskCreateExt().

Listing 4.7 Stack grows from high to low memory.
OS_STK  TaskStk[TASK_STK_SIZE];

OSTaskCreate(task, pdata, &TaskStk[TASK_STK_SIZE-1], prio);

Listing 4.8 Supporting stacks that grow in either direction.
OS_STK  TaskStk[TASK_STK_SIZE];

#if OS_STK_GROWTH == 0

    OSTaskCreate(task, pdata, &TaskStk[0], prio);

#else

    OSTaskCreate(task, pdata, &TaskStk[TASK_STK_SIZE-1], prio);

#endif



126 Chapter 4: Task Management
• Call OSTaskStkChk() from a task by specifying the priority of the task you want to check.  You
can inquire about any task stack, not just the running task.

Figure 4.2 Stack checking.

F4.2(1) In Figure 4.2, I assume that the stack grows from high memory to low memory (i.e.,
OS_STK_GROWTH is set to 1), but the following discussion applies equally well to a stack
growing in the opposite direction. µC/OS-II determines stack growth by looking at the
contents of the stack itself. Stack checking is performed on demand, as opposed to
continuously.

F4.2(2) To perform stack checking, µC/OS-II requires that the stack be filled with zeros when the
task is created. 

F4.2(3)

F4.2(4) Also, µC/OS-II needs to know the location of the bottom-of-stack (BOS) and the size of the
stack you assigned to the task. These two values are stored in the task’s OS_TCB when the task
is created but only if the task was created with OSTaskCreateExt().

F4.2(5) OSTaskStkChk() computes the amount of free stack space by walking from the bottom of
the stack and counting the number of zero-value entries on the stack until a nonzero value is
found. Note that stack entries are checked using the data type of the stack (see OS_STK in
OS_CPU.H). In other words, if a stack entry is 32-bits wide, the comparison for a zero value
is done using 32 bits.

F4.2(6)

F4.2(8) The amount of stack space used is obtained by subtracting the number of zero-value
entries from the stack size you specified in OSTaskCreateExt(). OSTaskStkChk() actu-
ally places the number of bytes free and the number of bytes used in a data structure of
type OS_STK_DATA (see uCOS_II.H).
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F4.2(7) Note that at any given time, the stack pointer for the task being checked might be pointing
somewhere between the initial top-of-stack (TOS) and the deepest stack growth. 

F4.2(5) Also, every time you call OSTaskStkChk(), you may get a different value for the amount of
free space on the stack until your task has reached its deepest growth.

You need to run the application long enough and under your worst-case conditions to get proper
numbers. After OSTaskStkChk() provides you with the worst-case stack requirement, you can go back
and set the final size of your stack. You should accommodate system expansion, so make sure you allo-
cate between 10 and 100 percent more stack than what OSTaskStkChk() reports. What you should get
from stack checking is a ballpark figure; you are not looking for an exact stack usage.

The code for OSTaskStkChk() is shown in Listing 4.9. The data structure OS_STK_DATA (see
uCOS_II.H) is used to hold information about the task stack. I decided to use a data structure for two
reasons. First, I consider OSTaskStkChk() to be a query-type function, and I wanted to have all
query functions work the same way — return data about the query in a data structure. Second, pass-
ing data in a data structure is efficient and allows me to add additional fields in the future without
changing the application programming interface (API) of OSTaskStkChk(). For now, OS_STK_DATA
only contains two fields: OSFree and OSUsed. As you can see, you invoke OSTaskStkChk() by speci-
fying the priority of the task on which you want to perform stack checking.

Listing 4.9 Stack-checking function. 
INT8U  OSTaskStkChk (INT8U prio, OS_STK_DATA *pdata)

{

#if OS_CRITICAL_METHOD == 3                      

    OS_CPU_SR  cpu_sr;

#endif

    OS_TCB    *ptcb;

    OS_STK    *pchk;

    INT32U     free;

    INT32U     size;

#if OS_ARG_CHK_EN > 0

    if (prio > OS_LOWEST_PRIO && prio != OS_PRIO_SELF) {                      (1)

        return (OS_PRIO_INVALID);

    }

#endif

    pdata->OSFree = 0;                                          

    pdata->OSUsed = 0;

    OS_ENTER_CRITICAL();

    if (prio == OS_PRIO_SELF) {                                               (2)

        prio = OSTCBCur->OSTCBPrio;

    }

    ptcb = OSTCBPrioTbl[prio];

    if (ptcb == (OS_TCB *)0) {                                                (3)
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L4.9(1) If OS_ARG_CHK_EN is set to 1 in OS_CFG.H, OSTaskStkChk() verifies that the priority is
within a valid range.

L4.9(2) If you specify OS_PRIO_SELF, the function assumes that you want to know the stack informa-
tion about the current task.

L4.9(3) Obviously, the task must exist.  Simply checking for the presence of a non-NULL pointer in
OSTCBPrioTbl[] ensures that the task exists.

L4.9(4) To perform stack checking, you must have created the task using OSTaskCreateExt(), and
you must have passed the option OS_TASK_OPT_STK_CHK. If you called OSTaskStkChk()
from a task that was created by OSTaskCreate() [instead of OSTaskCreateExt()], then the
opt argument [passed to OS_TCBInit()] would have been 0, and the test would fail.

L4.9(5) If all of the proper conditions are met, OSTaskStkChk() computes the free stack space as
described above by walking from the bottom of stack until a nonzero stack entry is encoun-
tered.

L4.9(6) Finally, the information that is stored in OS_STK_DATA is computed. Note that the function
computes the actual number of bytes free and the number of bytes used on the stack as

        OS_EXIT_CRITICAL();

        return (OS_TASK_NOT_EXIST);

    }

    if ((ptcb->OSTCBOpt & OS_TASK_OPT_STK_CHK) == 0) {                        (4)

        OS_EXIT_CRITICAL();

        return (OS_TASK_OPT_ERR);

    }

    free = 0;                                                                 (5)

    size = ptcb->OSTCBStkSize;

    pchk = ptcb->OSTCBStkBottom;

    OS_EXIT_CRITICAL();

#if OS_STK_GROWTH == 1

    while (*pchk++ == (OS_STK)0) {                    

        free++;

    }

#else

    while (*pchk-- == (OS_STK)0) {

        free++;

    }

#endif

    pdata->OSFree = free * sizeof(OS_STK);                                    (6)

    pdata->OSUsed = (size - free) * sizeof(OS_STK);   

    return (OS_NO_ERR);

}

Listing 4.9 Stack-checking function. (Continued)
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opposed to the number of elements. Obviously, the actual stack size (in bytes) can be
obtained by adding these two values.

4.04 Deleting a Task, OSTaskDel()
Sometimes it is necessary to delete a task. Deleting a task means that the task is returned to the dormant
state (see Section 3.02, “Task States”) and does not mean that the code for the task is actually “deleted.”
The task code is simply no longer scheduled by µC/OS-II. You delete a task by calling OSTaskDel()
(Listing 4.10).

Listing 4.10 Task delete. 
INT8U  OSTaskDel (INT8U prio)

{

#if OS_CRITICAL_METHOD == 3                      

    OS_CPU_SR     cpu_sr;

#endif

#if OS_EVENT_EN > 0

    OS_EVENT     *pevent;

#endif    

#if (OS_VERSION >= 251) && (OS_FLAG_EN > 0) && (OS_MAX_FLAGS > 0)

    OS_FLAG_NODE *pnode;

#endif

    OS_TCB       *ptcb;

    BOOLEAN       self;

    if (OSIntNesting > 0) {                                                    (1)

        return (OS_TASK_DEL_ISR);

    }

#if OS_ARG_CHK_EN > 0

    if (prio == OS_IDLE_PRIO) {                                                (2)

        return (OS_TASK_DEL_IDLE);

    }

    if (prio >= OS_LOWEST_PRIO && prio != OS_PRIO_SELF) {                      (3)

        return (OS_PRIO_INVALID);

    }

#endif

    OS_ENTER_CRITICAL();

    if (prio == OS_PRIO_SELF) {                                                (4)
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        prio = OSTCBCur->OSTCBPrio;                             

    }

    ptcb = OSTCBPrioTbl[prio];

    if (ptcb != (OS_TCB *)0) {                                                 (5)

        if ((OSRdyTbl[ptcb->OSTCBY] &= ~ptcb->OSTCBBitX) == 0x00) {            (6)

            OSRdyGrp &= ~ptcb->OSTCBBitY;

        }

#if OS_EVENT_EN > 0

        pevent = ptcb->OSTCBEventPtr;                                          (7)

        if (pevent != (OS_EVENT *)0) {                          

            if ((pevent->OSEventTbl[ptcb->OSTCBY] &= ~ptcb->OSTCBBitX) == 0) {

                pevent->OSEventGrp &= ~ptcb->OSTCBBitY;                       

            }

        }

#endif

#if (OS_VERSION >= 251) && (OS_FLAG_EN > 0) && (OS_MAX_FLAGS > 0)

        pnode = ptcb->OSTCBFlagNode;                                           (8)

        if (pnode != (OS_FLAG_NODE *)0) {                       

            OS_FlagUnlink(pnode);                               

        }

#endif

        ptcb->OSTCBDly  = 0;                                                   (9)

        ptcb->OSTCBStat = OS_STAT_RDY;                                        (10)

        if (OSLockNesting < 255) {                                            (11)

            OSLockNesting++;

        }

        OS_EXIT_CRITICAL();                                                   (12)

        OS_Dummy();                                                           (13)

        OS_ENTER_CRITICAL();                                    

        if (OSLockNesting > 0) {                                              (14)

            OSLockNesting--;

        }

        OSTaskDelHook(ptcb);                                                  (15)

        OSTaskCtr--;                                                          (16)

        OSTCBPrioTbl[prio] = (OS_TCB *)0;                                     (17)

        if (ptcb->OSTCBPrev == (OS_TCB *)0) {                                 (18)

            ptcb->OSTCBNext->OSTCBPrev = (OS_TCB *)0;

            OSTCBList                  = ptcb->OSTCBNext;

        } else {

Listing 4.10 Task delete. (Continued)
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L4.10(1) OSTaskDel() starts off by making sure you are not attempting to delete a task from within an
ISR, because that’s not allowed.

L4.10(2) OSTaskDel() checks that you are not attempting to delete the idle task because this is also
not allowed.

L4.10(3) You are allowed to delete the statistic task (OS_LOWEST_PRIO-1) and all higher priority tasks
(i.e., the task priority has a lower number).

L4.10(4) The caller can delete itself by specifying OS_PRIO_SELF as the argument.

L4.10(5) OSTaskDel() verifies that the task to delete does in fact exist. This test obviously passes if
you specified OS_PRIO_SELF. I didn’t want to create a separate case for this situation because
it would have increased code size and thus execution time.  If OS_PRIO_SELF is specified, we
simply obtain the priority of the current task, which is stored in its OS_TCB.

After all conditions are satisfied, the OS_TCB is removed from all possible µC/OS-II data structures.
OSTaskDel() does this action in two parts to reduce interrupt latency.

L4.10(6) First, if the task is in the ready list, it is removed. 

L4.10(7) If the task is in a list waiting for a mutex, mailbox, queue, or semaphore, it is removed from
that list. 

L4.10(8) If the task is in a list waiting for an event flag, it is removed from that list. 

L4.10(9) Next, OSTaskDel() forces the delay count to zero to make sure that the tick ISR does not
ready this task after I re-enable interrupts (see L4.10(12)). 

L4.10(10) OSTaskDel() sets the task’s .OSTCBStat flag to OS_STAT_RDY. Note that OSTaskDel() is
not trying to make the task ready; it is simply preventing another task or an ISR from
resuming this task [i.e., in case the other task or ISR calls OSTaskResume()]. This situation
could occur because OSTaskDel() will be re-enabling interrupts (see L4.10(12)), so an ISR
can make a higher priority task ready, which could resume the task you are trying to delete.
Instead of setting the task’s .OSTCBStat flag to OS_STAT_RDY, I simply could have cleared
the OS_STAT_SUSPEND bit (which would have been clearer), but this action takes slightly
more processing time.

            ptcb->OSTCBPrev->OSTCBNext = ptcb->OSTCBNext;

            ptcb->OSTCBNext->OSTCBPrev = ptcb->OSTCBPrev;

        }

        ptcb->OSTCBNext = OSTCBFreeList;                                      (19)

        OSTCBFreeList   = ptcb;

        OS_EXIT_CRITICAL();

        OS_Sched();                                                           (20)

        return (OS_NO_ERR);

    }

    OS_EXIT_CRITICAL();

    return (OS_TASK_DEL_ERR);

}

Listing 4.10 Task delete. (Continued)
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L4.10(11) At this point, the task to delete cannot be made ready to run by another task or an ISR
because it’s been removed from the ready list, it’s not waiting for an event to occur, it’s not
waiting for time to expire, and it cannot be resumed. For all intents and purposes, the task is
dormant. Because the task is dormant, OSTaskDel() must prevent the scheduler from switch-
ing to another task because if the current task is almost deleted, it could not be rescheduled!

L4.10(12) At this point, OSTaskDel() re-enables interrupts in order to reduce interrupt latency.
OSTaskDel() could thus service an interrupt, but, because it incremented OSLockNesting,
the ISR would return to the interrupted task. Note that OSTaskDel() is still not done with
the deletion process because it needs to unlink the OS_TCB from the TCB chain and return the
OS_TCB to the free OS_TCB list.

L4.10(13) Note that I call the dummy function OS_Dummy() immediately after calling OS_EXIT_CRITICAL().
I want to make sure that the processor executes at least one instruction with interrupts enabled.
On many processors, executing an interrupt-enable instruction forces the CPU to have inter-
rupts disabled until the end of the next instruction! The Intel 80x86 and Zilog Z-80 proces-
sors actually work this way. Enabling and immediately disabling interrupts would behave
just as if I didn’t enable interrupts, which would, of course, increase interrupt latency. Calling
OS_Dummy() thus ensures that I execute a call and a return instruction before re-disabling
interrupts. You could certainly replace OS_Dummy() with a macro that executes a no-operation
instruction and thus slightly reduce the execution time of OSTaskDel(). I didn’t think it was
worth the effort of creating yet another macro that would require porting.

L4.10(14) OSTaskDel() can now continue with the deletion process of the task. After OSTaskDel()
re-disables interrupts, OSTaskDel() re-enables scheduling by decrementing the lock nesting
counter.

L4.10(15) OSTaskDel() then calls the user-definable task delete hook OSTaskDelHook(), which allows
user-defined OS_TCB extensions to be relinquished.

L4.10(16) Next, OSTaskDel() decrements the task counter to indicate that µC/OS-II is managing one
less task.

L4.10(17) OSTaskDel() removes the OS_TCB from the priority table by simply replacing the link to the
OS_TCB of the task being deleted with a NULL pointer.

L4.10(18) OSTaskDel() then removes the OS_TCB of the task being deleted from the doubly linked list
of OS_TCBs that starts at OSTCBList. Note you do not need to check for the case where
ptcb->OSTCBNext == NULL because OSTaskDel() cannot delete the idle task, which always
happens to be at the end of the chain.

L4.10(19) The OS_TCB is returned to the free list of OS_TCBs to allow another task to be created.

L4.10(20) Finally, the scheduler is called to see if a higher priority task has been made ready to run by
an ISR that would have occurred when OSTaskDel() re-enabled interrupts at step
[L4.11(12)].

4.05 Requesting to Delete a Task, OSTaskDelReq()
Sometimes, a task owns resources such as memory buffers or a semaphore. If another task attempts to
delete this task, the resources are not freed and thus are lost. This would lead to memory leaks which is
not acceptable for just about any embedded system.  In this type of situation, you somehow need to tell
the task that owns these resources to delete itself when it’s done with the resources. You can accomplish
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this with the OSTaskDelReq() function. Both the requester and the task to be deleted need to call
OSTaskDelReq(). The requester code is shown in Listing 4.11.

L4.11(1) The task that makes the request needs to determine what conditions can cause a request for
the task to be deleted. In other words, your application determines what conditions lead to
this decision. 

L4.11(2) If the task needs to be deleted, call OSTaskDelReq() by passing the priority of the task to be
deleted. If the task to delete does not exist, OSTaskDelReq() returns OS_TASK_NOT_EXIST.
You get this response if the task to delete has already been deleted or has not been created
yet. If the return value is OS_NO_ERR, the request has been accepted, but the task has not been
deleted yet. You might want to wait until the task to be deleted does in fact delete itself.

L4.11(3) You can do this by delaying the requester for a certain amount of time. I decided to delay for
one tick, but you can certainly wait longer if needed. 

L4.11(4) When the requested task eventually deletes itself, the return value in L4.11(2) is
OS_TASK_NOT_EXIST, and the loop exits. 

The pseudocode for the task that needs to delete itself is shown in Listing 4.12. This task polls
a flag that resides inside the task’s OS_TCB. The value of this flag is obtained by calling
OSTaskDelReq(OS_PRIO_SELF).

Listing 4.11 Requester code requesting a task to delete itself.
void RequestorTask (void *pdata)

{

    INT8U err;

    pdata = pdata;

    for (;;) {

        /* Application code */

        if ('TaskToBeDeleted()' needs to be deleted) {                        (1)

            while (OSTaskDelReq(TASK_TO_DEL_PRIO) != OS_TASK_NOT_EXIST) {     (2)

                OSTimeDly(1);                                                 (3)

            }

        }

        /* Application code */                                                (4)

    }

}

Listing 4.12 Task requesting to delete itself. 
void TaskToBeDeleted (void *pdata)

{

    INT8U err;
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L4.12(1) When OSTaskDelReq() returns OS_TASK_DEL_REQ to its caller, it indicates that another task
has requested that this task needs to be deleted. 

L4.12(2)

L4.12(3) In this case, the task to be deleted releases any resources owned and calls
OSTaskDel(OS_PRIO_SELF) to delete itself. As previously mentioned, the code for the
task is not actually deleted. Instead, µC/OS-II simply does not schedule the task for exe-
cution. In other words, the task code no longer runs. You can, however, recreate the task
by calling either OSTaskCreate() or OSTaskCreateExt(). 

The code for OSTaskDelReq() is shown in Listing 4.13. As usual, OSTaskDelReq() needs to check
for boundary conditions. 

    pdata = pdata;

    for (;;) {

        /* Application code */

        if (OSTaskDelReq(OS_PRIO_SELF) == OS_TASK_DEL_REQ) {                 (1)

            Release any owned resources;                                     (2)

            De-allocate any dynamic memory;

            OSTaskDel(OS_PRIO_SELF);                                         (3)

        } else {

            /* Application code */

        }

    }

}

Listing 4.13 OSTaskDelReq(). 
INT8U  OSTaskDelReq (INT8U prio)

{

#if OS_CRITICAL_METHOD == 3                      

    OS_CPU_SR  cpu_sr;

#endif

    BOOLEAN    stat;

    INT8U      err;

    OS_TCB    *ptcb;

#if OS_ARG_CHK_EN > 0

    if (prio == OS_IDLE_PRIO) {                                               (1)

        return (OS_TASK_DEL_IDLE);

    }

Listing 4.12 Task requesting to delete itself. (Continued)
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L4.13(1) First, OSTaskDelReq() notifies the caller in case the caller requests to delete the idle task.

L4.13(2) Next, it must ensure that the caller is not trying to request to delete an invalid priority.

L4.13(3) If the caller is the task to be deleted, the flag stored in the OS_TCB is returned.

L4.13(4)

L4.13(5) If you specified a task with a priority other than OS_PRIO_SELF and the task exists,
OSTaskDelReq() sets the internal flag for that task.

L4.13(6) If the task does not exist, OSTaskDelReq() returns OS_TASK_NOT_EXIST to indicate that the
task must have deleted itself. 

    if (prio >= OS_LOWEST_PRIO && prio != OS_PRIO_SELF) {                     (2)

        return (OS_PRIO_INVALID);

    }

#endif

    if (prio == OS_PRIO_SELF) {                                               (3)

        OS_ENTER_CRITICAL();                                  

        stat = OSTCBCur->OSTCBDelReq;                         

        OS_EXIT_CRITICAL();

        return (stat);

    }

    OS_ENTER_CRITICAL();

    ptcb = OSTCBPrioTbl[prio];

    if (ptcb != (OS_TCB *)0) {                                                (4)

        ptcb->OSTCBDelReq = OS_TASK_DEL_REQ;                                  (5)

        err               = OS_NO_ERR;

    } else {

        err               = OS_TASK_NOT_EXIST;                                (6)

    }

    OS_EXIT_CRITICAL();

    return (err);

}

Listing 4.13 OSTaskDelReq(). (Continued)
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4.06 Changing a Task’s 
Priority,OSTaskChangePrio()

When you create a task, you assign the task a priority. At runtime, you can change the priority of any
task by calling OSTaskChangePrio(). In other words, µC/OS-II allows you to change priorities dynam-
ically. The code for OSTaskChangePrio() is shown in Listing 4.14.

Listing 4.14 OSTaskChangePrio(). 
INT8U  OSTaskChangePrio (INT8U oldprio, INT8U newprio)

{

#if OS_CRITICAL_METHOD == 3                      

    OS_CPU_SR    cpu_sr;

#endif

#if OS_EVENT_EN > 0

    OS_EVENT    *pevent;

#endif

    OS_TCB      *ptcb;

    INT8U        x;

    INT8U        y;

    INT8U        bitx;

    INT8U        bity;

#if OS_ARG_CHK_EN > 0

    if ((oldprio >= OS_LOWEST_PRIO && oldprio != OS_PRIO_SELF)  ||                            (1)

         newprio >= OS_LOWEST_PRIO) {

        return (OS_PRIO_INVALID);

    }

#endif

    OS_ENTER_CRITICAL();

    if (OSTCBPrioTbl[newprio] != (OS_TCB *)0) {                                               (2)

        OS_EXIT_CRITICAL();

        return (OS_PRIO_EXIST);

    } else {

        OSTCBPrioTbl[newprio] = (OS_TCB *)1;                                                  (3)

        OS_EXIT_CRITICAL();

        y    = newprio >> 3;                                                                  (4)

        bity = OSMapTbl[y];

        x    = newprio & 0x07;

        bitx = OSMapTbl[x];

        OS_ENTER_CRITICAL();

        if (oldprio == OS_PRIO_SELF) {                                                        (5)

            oldprio = OSTCBCur->OSTCBPrio;                      
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L4.14(1) You cannot change the priority of the idle task. You can change either the priority of the call-
ing task or another task. To change the priority of the calling task, specify either the old prior-
ity of that task or OS_PRIO_SELF, and OSTaskChangePrio() determines what the priority of
the calling task is for you. You must also specify the new (i.e., desired) priority.

        }

        ptcb = OSTCBPrioTbl[oldprio];

        if (ptcb != (OS_TCB *)0) {                                                            (6)

            OSTCBPrioTbl[oldprio] = (OS_TCB *)0;                                              (7)

            if ((OSRdyTbl[ptcb->OSTCBY] & ptcb->OSTCBBitX) != 0x00) {                         (8)

                if ((OSRdyTbl[ptcb->OSTCBY] &= ~ptcb->OSTCBBitX) == 0x00) {                   (9)

                    OSRdyGrp &= ~ptcb->OSTCBBitY;

                }

                OSRdyGrp    |= bity;                                                         (10)

                OSRdyTbl[y] |= bitx;

#if OS_EVENT_EN > 0

            } else {

                pevent = ptcb->OSTCBEventPtr;

                if (pevent != (OS_EVENT *)0) {                                               (11)

                    if ((pevent->OSEventTbl[ptcb->OSTCBY] &= ~ptcb->OSTCBBitX) == 0) {

                        pevent->OSEventGrp &= ~ptcb->OSTCBBitY;

                    }

                    pevent->OSEventGrp    |= bity;                                           (12)

                    pevent->OSEventTbl[y] |= bitx;

                }

#endif

            }

            OSTCBPrioTbl[newprio] = ptcb;                                                    (13)

            ptcb->OSTCBPrio       = newprio;                                                 (14)

            ptcb->OSTCBY          = y;                                                       (15)

            ptcb->OSTCBX          = x;

            ptcb->OSTCBBitY       = bity;

            ptcb->OSTCBBitX       = bitx;

            OS_EXIT_CRITICAL();

            OS_Sched();                                                                      (16)

            return (OS_NO_ERR);  

        } else {

            OSTCBPrioTbl[newprio] = (OS_TCB *)0;                                             (17)

            OS_EXIT_CRITICAL();

            return (OS_PRIO_ERR);                               

        }

    }

}

Listing 4.14 OSTaskChangePrio(). (Continued)
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L4.14(2) Because µC/OS-II cannot have multiple tasks running at the same priority,
OSTaskChangePrio() needs to check that the new desired priority is available.

L4.14(3) If the desired priority is available, µC/OS-II reserves the priority by loading something into
OSTCBPrioTbl[newprio], thus reserving that entry, which allows OSTaskChangePrio() to
re-enable interrupts and know that no other task can either create a task at the desired priority
or have another task call OSTaskChangePrio() by specifying the same new priority. 

L4.14(4) OSTaskChangePrio() precomputes some values that are stored in the task’s OS_TCB. These
values are used to put in or remove the task from the ready list (see Section 3.04, “Ready
List”).

L4.14(5) OSTaskChangePrio() then checks to see if the current task is attempting to change its own
priority.

L4.14(6) Next, we see if the task for which OSTaskChangePrio() is trying to change the priority
exists. Obviously, if it’s the current task, this test succeeds.

L4.14(17) However, if OSTaskChangePrio() is trying to change the priority of a task that doesn’t exist,
it must relinquish the “reserved” priority back to the priority table, OSTCBPrioTbl[], and
return an error code to the caller.

L4.14(7) OSTaskChangePrio() now removes the pointer to the OS_TCB of the task from the priority
table by inserting a NULL pointer, which makes the old priority available for reuse.

L4.14(8) Then, we check to see if the task for which OSTaskChangePrio() is changing the priority is
ready to run.

L4.14(9)

L4.14(10) If the task is ready to run, the task must be removed from the ready list at the current priority
and inserted back into the ready list at the new priority. Note here that OSTaskChangePrio()
uses the precomputed values [L4.14(4)] to insert the task in the ready list.

L4.14(11) If the task is not ready, it could be waiting on a semaphore, mutex, mailbox, or queue.
OSTaskChangePrio() knows that the task is waiting for one of these events if the
OSTCBEventPtr is non-NULL. 

L4.14(12) If the task is waiting for an event, OSTaskChangePrio() must remove the task from the wait
list (at the old priority) of the event control block (see Chapter 6, “Event Control Blocks”)
and insert the task back into the wait list, but this time at the new priority. The task could be
waiting for time to expire (see Chapter 5, “Time Management”) or the task could be sus-
pended [see section 4.07, Suspending a Task, OSTaskSuspend()]. In these cases, items
L4.14(8) through L4.14(12) are skipped.

L4.14(13) Next, OSTaskChangePrio() stores a pointer to the task’s OS_TCB in OSTCBPrioTbl[].

L4.14(14)

L4.14(15) The new priority is saved in the OS_TCB, and the precomputed values are also saved in the
OS_TCB.

L4.14(16) After OSTaskChangePrio() exits the critical section, the scheduler is called in case the new
priority is higher than the old priority or the priority of the calling task. 
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4.07 Suspending a Task, OSTaskSuspend()
Sometimes it is useful to suspend the execution of a task explicitly. Suspension is accomplished with the
OSTaskSuspend() function call. A suspended task can only be resumed by calling the OSTaskResume()
function call. Task suspension is additive, which means that if the task being suspended is also waiting
for time to expire, the suspension needs to be removed and the time needs to expire in order for the task
to be ready to run. A task can suspend either itself or another task.

The code for OSTaskSuspend() is shown in Listing 4.15. 

Listing 4.15 OSTaskSuspend(). 
INT8U  OSTaskSuspend (INT8U prio)

{

#if OS_CRITICAL_METHOD == 3                      

    OS_CPU_SR  cpu_sr;

#endif

    BOOLEAN    self;

    OS_TCB    *ptcb;

#if OS_ARG_CHK_EN > 0

    if (prio == OS_IDLE_PRIO) {                                               (1)

        return (OS_TASK_SUSPEND_IDLE);

    }

    if (prio >= OS_LOWEST_PRIO && prio != OS_PRIO_SELF) {                     (2)

        return (OS_PRIO_INVALID);

    }

#endif

    OS_ENTER_CRITICAL();

    if (prio == OS_PRIO_SELF) {                                               (3)

        prio = OSTCBCur->OSTCBPrio;

        self = TRUE;

    } else if (prio == OSTCBCur->OSTCBPrio) {                                 (4)

        self = TRUE;

    } else {

        self = FALSE;                                           

    }

    ptcb = OSTCBPrioTbl[prio];                                                (5)

    if (ptcb == (OS_TCB *)0) {

        OS_EXIT_CRITICAL();

        return (OS_TASK_SUSPEND_PRIO);

    }
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L4.15(1) OSTaskSuspend() ensures that your application is not attempting to suspend the idle task.

L4.15(2) Next, you must specify a valid priority. Remember that the highest valid priority number
(i.e., lowest priority) is OS_LOWEST_PRIO–1. Note that you can suspend the statistic task. You
might have noticed that the first test [L4.15(1)] is replicated in [L4.15(2)]. I replicated these
tests to be backward compatible with µC/OS. The first test could be removed to save a little
bit of processing time, but the amount is really insignificant so I decided to leave it.

L4.15(3) Next, OSTaskSuspend() checks to see if you specified to suspend the calling task by specify-
ing OS_PRIO_SELF.   In this case, the current task’s priority is retrieved from its OS_TCB.

L4.15(4) You could also decided to suspend the calling task by specifying its priority. In both of these
cases, the scheduler needs to be called, which is why I created the local variable self, which
will be examined at the appropriate time. If you are not suspending the calling task, then
OSTaskSuspend() does not need to run the scheduler because the calling task is suspending a
lower priority task.

L4.15(5) OSTaskSuspend() then checks to see that the task to suspend exists.

L4.15(6) If so, the task is removed from the ready list. Note that the task to suspend might not be in the
ready list because it could be waiting for an event or for time to expire. In this case, the corre-
sponding bit for the task to suspend in OSRdyTbl[] would already be cleared (i.e., 0). Clear-
ing it again is faster than checking to see if it’s clear and then clearing it if it’s not.

L4.15(7) Now OSTaskSuspend() sets the OS_STAT_SUSPEND flag in the task’s OS_TCB to indicate that
the task is now suspended.

L4.15(8) Finally, OSTaskSuspend() calls the scheduler only if the task being suspended is the calling
task.

    if ((OSRdyTbl[ptcb->OSTCBY] &= ~ptcb->OSTCBBitX) == 0x00) {               (6)

        OSRdyGrp &= ~ptcb->OSTCBBitY;

    }

    ptcb->OSTCBStat |= OS_STAT_SUSPEND;                                       (7)

    OS_EXIT_CRITICAL();

    if (self == TRUE) {                                         

        OS_Sched();                                                           (8)

    }

    return (OS_NO_ERR);

}

Listing 4.15 OSTaskSuspend(). (Continued)
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4.08 Resuming a Task, OSTaskResume()
As mentioned in the previous section, a suspended task can only be resumed by calling
OSTaskResume(). The code for OSTaskResume() is shown in Listing 4.16. 

Listing 4.16 OSTaskResume(). 
INT8U  OSTaskResume (INT8U prio)

{

#if OS_CRITICAL_METHOD == 3                      

    OS_CPU_SR  cpu_sr;

#endif

    OS_TCB    *ptcb;

#if OS_ARG_CHK_EN > 0

    if (prio >= OS_LOWEST_PRIO) {                                             (1)

        return (OS_PRIO_INVALID);

    }

#endif

    OS_ENTER_CRITICAL();

    ptcb = OSTCBPrioTbl[prio];

    if (ptcb == (OS_TCB *)0) {                                                (2)

        OS_EXIT_CRITICAL();

        return (OS_TASK_RESUME_PRIO);

    }

    if ((ptcb->OSTCBStat & OS_STAT_SUSPEND) != 0x00) {                        (3)

        if (((ptcb->OSTCBStat &= ~OS_STAT_SUSPEND) == OS_STAT_RDY) &&         (4)

             (ptcb->OSTCBDly  == 0)) {                                        (5)

            OSRdyGrp               |= ptcb->OSTCBBitY;                        (6)

            OSRdyTbl[ptcb->OSTCBY] |= ptcb->OSTCBBitX;

            OS_EXIT_CRITICAL();

            OS_Sched();                                                       (7)

        } else {

            OS_EXIT_CRITICAL();

        }

        return (OS_NO_ERR);

    }

    OS_EXIT_CRITICAL();

    return (OS_TASK_NOT_SUSPENDED);

}



142 Chapter 4: Task Management
L4.16(1) Because OSTaskSuspend() cannot suspend the idle task, it must verify that your application
is not attempting to resume this task.   Note that this test also ensures that you are not trying
to resume OS_PRIO_SELF (OS_PRIO_SELF is #defined to 0xFF, which is always greater
than OS_LOWEST_PRIO), which wouldn’t make sense — you can’t resume self because self
cannot possibly be suspended.

L4.16(2)

L4.16(3) The task to resume must exist because you will be manipulating its OS_TCB and must also
have been suspended.

L4.16(4) OSTaskResume() removes the suspension by clearing the OS_STAT_SUSPEND bit in the
.OSTCBStat field.

L4.16(5) For the task to be ready to run, the .OSTCBDly field must be 0 because no flags exist in
OSTCBStat to indicate that a task is waiting for time to expire.

L4.16(6) The task is made ready to run only when both conditions are satisfied.

L4.16(7) Finally, the scheduler is called to see if the resumed task has a higher priority than the calling task. 

4.09 Getting Information about a Task, 
OSTaskQuery()

Your application can obtain information about itself or other application tasks by calling OSTaskQuery().
In fact, OSTaskQuery() obtains a copy of the contents of the desired task’s OS_TCB. The fields available to
you in the OS_TCB depend on the configuration of your application (see OS_CFG.H). Indeed, because
µC/OS-II is scalable, it only includes the features that your application requires.

To call OSTaskQuery(), your application must allocate storage for an OS_TCB, as shown in Listing
4.17. This OS_TCB is in a totally different data space from the OS_TCBs allocated by µC/OS-II. After call-
ing OSTaskQuery(), this OS_TCB contains a snapshot of the OS_TCB for the desired task. You need to be
careful with the links to other OS_TCBs (i.e., .OSTCBNext and .OSTCBPrev); you don’t want to change
what these links are pointing to! In general, only use this function to see what a task is doing — a great
tool for debugging.

Listing 4.17 Obtaining information about a task. 
void MyTask (void *pdata)

{

    OS_TCB  MyTaskData;

    pdata = pdata;

    for (;;) {

        /* User code                    */

        err = OSTaskQuery(10, &MyTaskData);

        /* Examine error code ..        */

        /* User code                    */

    }

}
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The code for OSTaskQuery() is shown in Listing 4.18.

L4.18(1) Note that I allow you to examine all the tasks, including the idle task. You need to be espe-
cially careful not to change what .OSTCBNext and .OSTCBPrev points to.

L4.18(2)

L4.18(3) As usual, OSTaskQuery() checks to see if you want information about the current task and
that the task has been created.

L4.18(4) All fields are copied using the assignment shown instead of field by field. Using memcpy() is
much faster than field-by-field copy or even-structure copies because the compiler will most
likely generate memory-copy instructions.

Listing 4.18 OSTaskQuery(). 
INT8U  OSTaskQuery (INT8U prio, OS_TCB *pdata)

{

#if OS_CRITICAL_METHOD == 3                      

    OS_CPU_SR  cpu_sr;

#endif

    OS_TCB    *ptcb;

#if OS_ARG_CHK_EN > 0

    if (prio > OS_LOWEST_PRIO && prio != OS_PRIO_SELF) {                      (1)

        return (OS_PRIO_INVALID);

    }

#endif

    OS_ENTER_CRITICAL();

    if (prio == OS_PRIO_SELF) {                                               (2)

        prio = OSTCBCur->OSTCBPrio;

    }

    ptcb = OSTCBPrioTbl[prio];

    if (ptcb == (OS_TCB *)0) {                                                (3)

        OS_EXIT_CRITICAL();

        return (OS_PRIO_ERR);

    }

    memcpy(pdata, ptcb, sizeof(OS_TCB));                                       (4)

    OS_EXIT_CRITICAL();

    return (OS_NO_ERR);

}
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Chapter 5

Time Management
Section 3.11, “Clock Tick,” established that µC/OS-II requires (as do most kernels) that you provide a
periodic interrupt to keep track of time delays and timeouts. This periodic time source is called a clock
tick and should occur between 10 and 100 times per second, or Hertz. The actual frequency of the clock
tick depends on the desired tick resolution of your application. However, the higher the frequency of the
ticker, the higher the overhead.

Section 3.10, “Interrupts Under µC/OS-II”, discussed the tick ISR, as well as the function to call to
notify µC/OS-II about the tick interrupt — OSTimeTick(). This chapter describes five services that deal
with time issues:

• OSTimeDly(),

• OSTimeDlyHMSM(),

• OSTimeDlyResume(),

• OSTimeGet(), and

• OSTimeSet().

The functions described in this chapter are found in the file OS_TIME.C.
Some of the time management services must be enabled by setting configuration constants in

OS_CFG.H.  Specifically, Table 5.1 shows which services are compiled, based on the value of config-
uration constants found in OS_CFG.H.

Table 5.1 Time management configuration constants in OS_CFG.H.

µC/OS-II Time Management Service Enabled when set to 1 in OS_CFG.H
OSTimeDly()

OSTimeDlyHMSM() OS_TIME_DLY_HMSM_EN

OSTimeDlyResume() OS_TIME_DLY_RESUME_EN

OSTimeGet() OS_TIME_GET_SET_EN

OSTimeSet() OS_TIME_GET_SET_EN
 145
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5.00 Delaying a Task, OSTimeDly()
µC/OS-II provides a service that allows the calling task to delay itself for a user-specified number of
clock ticks. This function is called OSTimeDly(). Calling this function causes a context switch and
forces µC/OS-II to execute the next highest priority task that is ready to run. The task calling
OSTimeDly() is made ready to run as soon as the time specified expires or if another task cancels the
delay by calling OSTimeDlyResume(). Note that this task runs only when it’s the highest priority task.

Listing 5.1 shows the code for OSTimeDly(). Your application calls this function by supplying the
number of ticks to delay — a value between 1 and 65,535. A value of 0 specifies no delay.  

L5.1(1) If you specify a value of 0, you are indicating that you don’t want to delay the task, so the
function returns immediately to the caller. 

L5.1(2) A nonzero value causes OSTimeDly() to remove the current task from the ready list. 

L5.1(3) Next, the number of ticks are stored in the OS_TCB of the current task, where OSTimeTick()
decrements it on every clock tick. You should note that the calling task is not placed in any
wait list.  Simply having a non zero value in .OSTCBDly is sufficient for OSTimeTick() to
know that the task is delayed.

L5.1(4) Finally, because the task is no longer ready, the scheduler is called so that the next highest
priority task that is ready to run is executed.

It is important to realize that the resolution of a delay is between zero and one tick. In other words, if
you try to delay for only one tick, you could end up with an intermediate delay between zero and one
tick. This is assuming, however, that your processor is not heavily loaded. Figure 5.1 illustrates what
happens.

Listing 5.1 OSTimeDly(). 
void OSTimeDly (INT16U ticks)

{

    if (ticks > 0) {                                                          (1)

        OS_ENTER_CRITICAL();

        if ((OSRdyTbl[OSTCBCur->OSTCBY] &= ~OSTCBCur->OSTCBBitX) == 0) {      (2)

            OSRdyGrp &= ~OSTCBCur->OSTCBBitY;

        }

        OSTCBCur->OSTCBDly = ticks;                                           (3)

        OS_EXIT_CRITICAL();

        OSSched();                                                            (4)

    }

}
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Figure 5.1 Delay resolution.

F5.1(1) A tick interrupt occurs every 10ms. 

F5.1(2) Assuming that you are not servicing any other interrupts and that you have interrupts
enabled, the tick ISR is invoked. 

F5.1(3) You might have a few high priority tasks (HPT) waiting for time to expire, so they execute
next. 

F5.1(4) The low priority task (LPT) shown in Figure 5.1 then executes and, upon completion, calls
OSTimeDly(1) at the moment shown. µC/OS-II puts the task to sleep until the next tick.

F5.1(5)

F5.1(6) When the next tick arrives, the tick ISR executes, but this time no HPTs exist to execute, and
µC/OS-II executes the task that delayed itself for one tick. As you can see, the task actually
delayed for less than one tick! On heavily loaded systems, the task can call OSTimeDly(1) a
few tens of microseconds before the tick occurs, and thus the delay results in almost no delay
because the task is immediately rescheduled. If your application must delay for at least one
tick, you must call OSTimeDly(2) and thus specify a delay of two ticks.
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5.01 Delaying a Task, OSTimeDlyHMSM()
OSTimeDly() is a very useful function, but your application needs to know time in terms of ticks. You
can use the global #define constant OS_TICKS_PER_SEC (see OS_CFG.H) to convert time to ticks by
declaring some #defines as follows:

However, this process is somewhat awkward. I added the function OSTimeDlyHMSM() so that you can
specify time in hours (H), minutes (M), seconds (S), and milliseconds (ms), which is more natural. Like
calling OSTimeDly(), calling this function causes a context switch and forces µC/OS-II to execute the
next highest priority task that is ready to run. The task calling OSTimeDlyHMSM() is made ready to run
as soon as the time specified expires or if another task cancels the delay by calling
OSTimeDlyResume() [see Section 5.02, “Resuming a Delayed Task,OSTimeDlyResume()”]. Again,
this task runs only when it again becomes the highest priority task. Listing 5.2 shows the code for
OSTimeDlyHMSM(). As you can see, your application calls this function by supplying the delay in hours,
minutes, seconds, and milliseconds. In practice, you should avoid delaying a task for long periods of
time because it’s always a good idea to get some feedback activity from a task (for example increment a
counter or blink an LED,). However, if you do need long delays, µC/OS-II can delay a task for 256
hours (close to 11 days).

#define  OS_TIME_100mS  (INT16U)((INT32U)OS_TICKS_PER_SEC * 100L / 1000L)

#define  OS_TIME_500mS  (INT16U)((INT32U)OS_TICKS_PER_SEC * 500L / 1000L)

#define  OS_TIME_2S     (INT16U)(OS_TICKS_PER_SEC * 2)

Listing 5.2 OSTimeDlyHMSM(). 
INT8U OSTimeDlyHMSM (INT8U hours, INT8U minutes, INT8U seconds, INT16U milli)

{

    INT32U ticks;

    INT16U loops;

    if (hours > 0 || minutes > 0 || seconds > 0 || milli > 0) {               (1)

        if (minutes > 59) {

            return (OS_TIME_INVALID_MINUTES);

        }

        if (seconds > 59) {

            return (OS_TIME_INVALID_SECONDS);

        }

        if (milli > 999) {

            return (OS_TIME_INVALID_MILLI);

        } 



Delaying a Task, OSTimeDlyHMSM() 149

5

L5.2(1) OSTimeDlyHMSM() starts by checking that you have specified valid values for its arguments.

L5.2(9) As with OSTimeDly(), OSTimeDlyHMSM() exits if you specify no delay.

Because µC/OS-II only knows about ticks, the total number of ticks is computed from the
specified time. The code shown in Listing 5.2 is obviously not very efficient. I just showed
the equation this way so you can see how the total ticks are computed. The actual code effi-
ciently factors in OS_TICKS_PER_SEC.

L5.2(3) This portion of the equation determines the number of ticks given the specified milliseconds
with rounding to the nearest tick. The value 500/OS_TICKS_PER_SECOND basically corresponds
to 0.5 ticks converted to milliseconds. For example, if the tick rate (OS_TICKS_PER_SEC) is set
to 100Hz (10ms), a delay of 4ms results in no delay! A delay of 5ms results in a delay of 10ms,
and so on.

L5.2(4)

L5.2(5) µC/OS-II only supports delays of up to 65,535 ticks. To support longer delays, obtained by
L5.2(2), OSTimeDlyHMSM() determines how many times you need to delay for more than
65,535 ticks, as well as the remaining number of ticks. For example, if OS_TICKS_PER_SEC
is 100 and you want a delay of 15 minutes, then OSTimeDlyHMSM() has to delay for 15 × 60 ×
100 = 90,000 ticks. This delay is broken down into two delays of 32,768 ticks and one delay
of 24,464 ticks (because you can’t delay 65,536 ticks, only 65,535).

L5.2(6)

L5.2(7)

L5.2(8) In this case, OSTimeDlyHMSM() takes care of the remainder first, then the number of times
65,535 is exceeded (i.e., two 32,768-tick delays).

        ticks = (INT32U)hours    * 3600L * OS_TICKS_PER_SEC                   (2)

              + (INT32U)minutes  *   60L * OS_TICKS_PER_SEC

              + (INT32U)seconds  *         OS_TICKS_PER_SEC

              + OS_TICKS_PER_SEC * ((INT32U)milli
              + 500L / OS_TICKS_PER_SEC) / 1000L;                             (3)

        loops = ticks / 65536L;                                               (4)

        ticks = ticks % 65536L;                                               (5)

        OSTimeDly(ticks);                                                     (6)

        while (loops > 0) {                                                   (7)

            OSTimeDly(32768);                                                 (8)

            OSTimeDly(32768);

            loops--;

        }

        return (OS_NO_ERR);
    }

    return (OS_TIME_ZERO_DLY);                                                (9)

}

Listing 5.2 OSTimeDlyHMSM(). (Continued)
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Because of the way OSTimeDlyHMSM() is implemented, you cannot resume (see Section 5.02,
“Resuming a Delayed Task,OSTimeDlyResume()”) a task that calls OSTimeDlyHMSM() with a com-
bined time that exceeds 65,535 clock ticks. In other words, if the clock tick runs at 100Hz, you cannot
resume a delayed task that calls OSTimeDlyHMSM(0, 10, 55, 350) or higher.

5.02 Resuming a Delayed Task,OSTimeDlyResume()
Instead of waiting for time to expire, a delayed task can be made ready to run by another task that can-
cels the delay. This action is done by calling OSTimeDlyResume() and specifying the priority of the task
to resume. In fact, OSTimeDlyResume() also can resume a task that is waiting for an event (see Chapters
7  through 11), although this action is not recommended. In this case, the task pending on the event
thinks it timed out waiting for the event. The code for OSTimeDlyResume() is shown in Listing 5.3.

Listing 5.3 Resuming a delayed task. 
INT8U  OSTimeDlyResume (INT8U prio)

{

#if OS_CRITICAL_METHOD == 3                      

    OS_CPU_SR  cpu_sr;

#endif    

    OS_TCB    *ptcb;

    if (prio >= OS_LOWEST_PRIO) {                                                             (1)

        return (OS_PRIO_INVALID);

    }

    OS_ENTER_CRITICAL();

    ptcb = (OS_TCB *)OSTCBPrioTbl[prio];                   

    if (ptcb != (OS_TCB *)0) {                                                                (2)

        if (ptcb->OSTCBDly != 0) {                                                            (3)

            ptcb->OSTCBDly  = 0;                                                              (4)

            if ((ptcb->OSTCBStat & OS_STAT_SUSPEND) == OS_STAT_RDY) {                         (5)

                OSRdyGrp               |= ptcb->OSTCBBitY;                                    (6)

                OSRdyTbl[ptcb->OSTCBY] |= ptcb->OSTCBBitX;

                OS_EXIT_CRITICAL();

                OS_Sched();                                                                    (7)

            } else {

                OS_EXIT_CRITICAL();                        

            }

            return (OS_NO_ERR);

        } else {

            OS_EXIT_CRITICAL();

            return (OS_TIME_NOT_DLY);                      

        }

    }

    OS_EXIT_CRITICAL();

    return (OS_TASK_NOT_EXIST);                            

}
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L5.3(1) OSTimeDlyResume() begins by making sure the task has a valid priority.

L5.3(2) Next, OSTimeDlyResume() verifies that the task to resume does in fact exist.

L5.3(3) If the task exists, OSTimeDlyResume() checks to see if the task is waiting for time to expire.
Whenever the OS_TCB field .OSTCBDly contains a nonzero value, the task is waiting for time
to expire because the task called either OSTimeDly(), OSTimeDlyHMSM(), or any of the PEND
functions described in subsequent chapters.

L5.3(4) The delay is then canceled by forcing .OSTCBDly to 0.

L5.3(5) A delayed task might also have been suspended; thus, the task is only made ready to run if
the task was not suspended.

L5.3(6) The task is placed in the ready list when the above conditions are satisfied.

L5.3(7) At this point, OSTimeDlyResume() calls the scheduler to see if the resumed task has a higher
priority than the current task, which results in a context switch.

Note that you could also have a task delay itself by waiting on a semaphore, mutex, event flag, mail-
box, or queue with a timeout (see Chapters 7  through 11). You resume such a task by simply posting to
the semaphore, mutex, event flag, mailbox, or queue, respectively. The only problem with this scenario
is that it requires you to allocate an event control block (see Section 6.00, “Placing a Task in the ECB
Wait List”), so your application would consume a little bit more RAM.

5.03 System Time, OSTimeGet() and OSTimeSet()
Whenever a clock tick occurs, µC/OS-II increments a 32-bit counter. This counter starts at zero when
you initiate multitasking by calling OSStart() and rolls over after 4,294,967,295 ticks. At a tick rate of
100Hz, this 32-bit counter rolls over every 497 days. You can obtain the current value of this counter by
calling OSTimeGet(). You can also change the value of the counter by calling OSTimeSet(). The code
for both functions is shown in Listing 5.4. Note that interrupts are disabled when accessing OSTime
because incrementing and copying a 32-bit value on most 8-bit processors requires multiple instructions
that must be treated indivisibly.

Listing 5.4 Obtaining and setting the system time. 
INT32U  OSTimeGet (void)

{

#if OS_CRITICAL_METHOD == 3  

    OS_CPU_SR  cpu_sr;

#endif    

    INT32U     ticks;

    OS_ENTER_CRITICAL();

    ticks = OSTime;

    OS_EXIT_CRITICAL();

    return (ticks);

}
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void  OSTimeSet (INT32U ticks)

{

#if OS_CRITICAL_METHOD == 3 

    OS_CPU_SR  cpu_sr;

#endif    

    OS_ENTER_CRITICAL();

    OSTime = ticks;

    OS_EXIT_CRITICAL();

}

Listing 5.4 Obtaining and setting the system time. (Continued)
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Chapter 6

Event Control Blocks
Figure 6.1 (page 153) shows how tasks and ISRs can interact with each other. A task or an ISR signals a
task through a kernel object called an event control block (ECB). The signal is considered to be an event,
which explains my choice of this name.

Figure 6.1 Use of event control blocks.  
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F6.1A(1) An ISR or a task can signal an ECB.

F6.1A(2) Only a task can wait for another task or an ISR to signal the ECB. An ISR is not allowed to
wait on an ECB.

F6.1A(3) An optional timeout can be specified by the waiting task in case the object is not signaled
within a specified time period. 

F6.1B Multiple tasks can wait for a task or an ISR to signal an ECB. When the ECB is signaled,
only the highest priority task waiting on the ECB is signaled and made ready to run. An ECB
can be a semaphore, a message mailbox, or a message queue, as discussed later. 

F6.1C(4) When an ECB is used as a semaphore, tasks can both wait on and signal the ECB.

An ECB is used as a building block to implement services, such as “Semaphore Management”
(Chapter 7), “Mutual Exclusion Semaphores” (Chapter 8), “Message Mailbox Management” (Chapter
10), and “Message Queue Management” (Chapter 11). 

µC/OS-II maintains the state of an ECB in a data structure called OS_EVENT (see uCOS_II.H). The
state of an event consists of the event itself (a counter for a semaphore, a bit for a mutex, a pointer for a
message mailbox, or an array of pointers for a queue) and a list of tasks waiting for the event to occur.
Each semaphore, mutual exclusion semaphore, message mailbox, and message queue is assigned an
ECB. The data structure for an ECB is shown in Listing 6.1 and also graphically in Figure 6.2
(page 155).    

.OSEventType
contains the type associated with the ECB and can have the following values: OS_EVENT_TYPE_SEM,
OS_EVENT_TYPE_MUTEX, OS_EVENT_TYPE_MBOX, or OS_EVENT_TYPE_Q. This field is used to make
sure you are accessing the proper object when you perform operations on these objects through
µC/OS-II’s service calls.  .OSEventType is the first field (and first byte) of the data structure.  This
allows run-time checking to determine whether the pointer points to an ECB or an event flag (see
Chapter 9).

.OSEventPtr
is only used when the ECB is assigned to a message mailbox or a message queue.  It points to the
message when used for a mailbox or to a data structure when used for a queue (see Chapter 10,
“Message Mailbox Management” and Chapter 11, “Message Queue Management”).

.OSEventTbl[] and .OSEventGrp
are similar to OSRdyTbl[] and OSRdyGrp, respectively, except that they contain a list of tasks waiting
on the event instead of a list of tasks ready to run (see Section 3.04, “Ready List”).

Listing 6.1 Event control block data structure.
typedef struct {

    INT8U   OSEventType;                   /* Event type                        */

    INT8U   OSEventGrp;                    /* Group for wait list               */

    INT16U  OSEventCnt;                    /* Count (when event is a semaphore) */

    void   *OSEventPtr;                    /* Ptr to message or queue structure */

    INT8U   OSEventTbl[OS_EVENT_TBL_SIZE]; /* Wait list for event to occur      */

} OS_EVENT;
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.OSEventCnt
is used to hold the semaphore count when the ECB is used for a semaphore (see Chapter 7, “Sema-
phore Management”) or the mutex and PIP when the ECB is used for a mutex (see Chapter 8,
“Mutual Exclusion Semaphores”).

Figure 6.2 Event Control Block (ECB).

Each task that needs to wait for the event to occur is placed in the wait list, which consists of the two
variables, .OSEventGrp and .OSEventTbl[]. Note that I used a dot (.) in front of the variable name to
indicate that the variable is part of a data structure. Task priorities are grouped (eight tasks per group) in
.OSEventGrp. Each bit in .OSEventGrp is used to indicate when any task in a group is waiting for the
event to occur. When a task is waiting, its corresponding bit is set in the wait table, .OSEventTbl[]. The
size (in bytes) of .OSEventTbl[] depends on OS_LOWEST_PRIO (see uCOS_II.H). This allows µC/OS-II
to reduce the amount of RAM (i.e., data space) when the application requires just a few task priorities.

The task that is resumed when the event occurs is the highest priority task waiting for the event and
corresponds to the lowest priority number that has a bit set in .OSEventTbl[]. The relationship between
.OSEventGrp and .OSEventTbl[] is shown in Figure 6.3 and is given by the following rules.

Bit 0 in .OSEventGrp is 1 when any bit in .OSEventTbl[0] is 1.
Bit 1 in .OSEventGrp is 1 when any bit in .OSEventTbl[1] is 1.
Bit 2 in .OSEventGrp is 1 when any bit in .OSEventTbl[2] is 1.
Bit 3 in .OSEventGrp is 1 when any bit in .OSEventTbl[3] is 1.
Bit 4 in .OSEventGrp is 1 when any bit in .OSEventTbl[4] is 1.
Bit 5 in .OSEventGrp is 1 when any bit in .OSEventTbl[5] is 1.
Bit 6 in .OSEventGrp is 1 when any bit in .OSEventTbl[6] is 1.
Bit 7 in .OSEventGrp is 1 when any bit in .OSEventTbl[7] is 1.

OS_EVENT

.OSEventTbl[]
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Figure 6.3 Wait list for task waiting for an event to occur.

6.00 Placing a Task in the ECB Wait List
The code in Listing 6.2 places a task in the wait list:

prio is the task’s priority, and pevent is a pointer to the event control block.
You should realize from Listing 6.2 that the time required to insert a task in the wait list is constant

and does not depend on how many tasks are in the system. Also, from Figure 6.3, the lower 3 bits of the
task’s priority are used to determine the bit position in .OSEventTbl[], and the next three most signifi-
cant bits are used to determine the index into .OSEventTbl[]. Note that OSMapTbl[] (see OS_CORE.C)
is a table in ROM, used to equate an index from 0 to 7 to a bit mask, as shown in the Table 6.1.

Listing 6.2 Making a task wait for an event.
    pevent->OSEventGrp            |= OSMapTbl[prio >> 3];

    pevent->OSEventTbl[prio >> 3] |= OSMapTbl[prio & 0x07];

01234567

89101112131415

1617181920212223

2425262728293031

3233343536373839

4041424344454647

4849505152535455

5657585960616263

Priority of task waiting
for the event to occur.

Lowest Priority Task
(Idle Task, can NEVER be waiting)

Highest Priority Task Waiting

X

Y

.OSEventTbl[OS_LOWEST_PRIO / 8 + 1]01234567

.OSEventGrp

[7]

[6]

[5]

[4]

[3]

[2]

[1]

[0]

0 0 Y Y Y X X X

Bit position in .OSEventTbl[OS_LOWEST_PRIO / 8 + 1]

Bit position  in .OSEventGrp and
Index into .OSEventTbl[OS_LOWEST_PRIO / 8 + 1]

Task's Priority



Removing a Task from an ECB Wait List 157

6
6.01 Removing a Task from an ECB Wait List
A task is removed from the wait list by reversing the process as in Listing 6.3.

This code clears the bit corresponding to the task in .OSEventTbl[] and clears the bit in
.OSEventGrp, only if all tasks in a group are not waiting; that is, all bits in .OSEventTbl[prio >> 3]
are 0.

6.02 Finding the Highest Priority Task Waiting on 
an ECB

The code to find the highest priority task waiting for an event to occur is shown in Listing 6.4.  Table
lookups are again used for performance reasons because we don’t want to scan the .OSEventTbl[] one
bit at a time to locate the highest priority task waiting on the event.

L6.4(1) Using .OSEventGrp as an index into OSUnMapTbl[] (see Listing 6.5) you can quickly locate
which entry in .OSEventTbl[] holds the highest priority task waiting for the ECB.

Table 6.1 Content of OSMapTbl[].

Index Bit Mask (Binary)
0 00000001

1 00000010

2 00000100

3 00001000

4 00010000

5 00100000

6 01000000

7 10000000

Listing 6.3 Removing a task from a wait list.
if ((pevent->OSEventTbl[prio >> 3] &= ~OSMapTbl[prio & 0x07]) == 0) {

    pevent->OSEventGrp &= ~OSMapTbl[prio >> 3];

}

Listing 6.4 Finding the highest priority task waiting for the event.
    y    = OSUnMapTbl[pevent->OSEventGrp];                                    (1)

    x    = OSUnMapTbl[pevent->OSEventTbl[y]];                                 (2)

    prio = (y << 3) + x;                                                      (3)
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OSUnMapTbl[] returns the bit position of the highest priority bit set — a number between 0
and 7.  This number corresponds to the Y position in .OSEventTbl[] (see Figure 6.3).

L6.4(2) After we know which row (see Figure 6.3) contains the highest priority task waiting for the
ECB, we can zoom in on the actual bit by performing another lookup in OSUnMapTbl[] but
this time, with the entry in .OSEventTbl[] just found.  Again, we get a number between 0
and 7. This number corresponds to the X position in .OSEventTbl[] (see Figure 6.3).

L6.4(3) By combining the two previous operations, we can determine the priority number of the
highest priority task waiting on the ECB.  This number is between 0 and 63.

Let’s look at an example, as shown in Figure 6.4, if .OSEventGrp contains 11001000 (binary) or
0xC8, OSUnMapTbl[.OSEventGrp] yields a value of 3, which corresponds to bit 3 in .OSEventGrp and
also happens to be the index in .OSEventTbl[], which contains the first non-zero entry.  Note that bit
positions are assumed to start on the right with bit 0 being the rightmost bit. Similarly, if
.OSEventTbl[3] contains 00010000 (binary) or 0x10, OSUnMapTbl[.OSEventTbl[3]] results in a
value of 4 (bit 4). The priority of the task waiting (prio) is thus 28 (3 x 8 + 4), which corresponds to
the number in .OSEventTbl[] of Figure 6.3.

Listing 6.5 OSUnMapTbl[].
INT8U  const  OSUnMapTbl[] = {

    0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,     /* 0x00 to 0x0F */

    4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,     /* 0x10 to 0x1F */

    5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,     /* 0x20 to 0x2F */

    4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,     /* 0x30 to 0x3F */

    6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,     /* 0x40 to 0x4F */

    4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,     /* 0x50 to 0x5F */

    5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,     /* 0x60 to 0x6F */

    4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,     /* 0x70 to 0x7F */

    7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,     /* 0x80 to 0x8F */

    4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,     /* 0x90 to 0x9F */

    5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,     /* 0xA0 to 0xAF */

    4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,     /* 0xB0 to 0xBF */

    6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,     /* 0xC0 to 0xCF */

    4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,     /* 0xD0 to 0xDF */

    5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,     /* 0xE0 to 0xEF */

    4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0      /* 0xF0 to 0xFF */

};
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Figure 6.4 Example of ECB wait list.

6.03 List of Free ECBs
The number of ECBs to allocate depends on the number of semaphores, mutual exclusion semaphores,
mailboxes, and queues needed for the application. The number of ECBs is established by the #define
OS_MAX_EVENTS, which is found in OS_CFG.H. When OSInit() is called (see Section 3.12, “µC/OS-II
Initialization”), all ECBs are linked in a singly linked list — the list of free ECBs (Figure 6.5). When a
semaphore, mutex, mailbox, or queue is created, an ECB is removed from this list and initialized. ECBs
can be returned to the list of free ECBs by invoking the OS???Del() functions for semaphore, mutex,
mailbox, or queue services.
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Figure 6.5 List of free ECBs.

Four common operations can be performed on ECBs:

• initialize an ECB,

• make a task ready,

• make a task wait for an event, and

• make a task ready because a timeout occurred while waiting for an event.

To avoid duplicating code and thus to reduce code size, four functions have been created to perform these
operations: OS_EventWaitListInit(), OS_EventTaskRdy(), OS_EventWait(), and OS_EventTO(),
respectively.

6.04 Initializing an ECB,
OS_EventWaitListInit()

Listing 6.6 shows the code for OS_EventWaitListInit(), which is a function called when a sema-
phore, mutex, message mailbox, or message queue is created [see OSSemCreate(), OSMutexCreate(),
OSMboxCreate(), or OSQCreate()].   All that is accomplished by OS_EventWaitListInit() is to indi-
cate that no task is waiting on the ECB. OS_EventWaitListInit() is passed a pointer to an event con-
trol block, which is assigned when the semaphore, mutex, message mailbox, or message queue is
created.  The code is implemented inline to avoid the overhead of a for loop.

Listing 6.6 Initializing the wait list. 
void  OS_EventWaitListInit (OS_EVENT *pevent)

{

    INT8U  *ptbl;

    pevent->OSEventGrp = 0x00;

    ptbl               = &pevent->OSEventTbl[0];
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6.05 Making a Task Ready, OS_EventTaskRdy()
Listing 6.7 shows the code for OS_EventTaskRdy(). This function is called by the POST functions for a
semaphore, a mutex, a message mailbox, or a message queue when an ECB is signaled and the highest
priority task waiting on the ECB needs to be made ready to run. In other words, OS_EventTaskRdy()
removes the highest priority task (HPT) from the wait list of the ECB and makes this task ready to run.  

#if OS_EVENT_TBL_SIZE > 0

    *ptbl++            = 0x00;

#endif

#if OS_EVENT_TBL_SIZE > 1

    *ptbl++            = 0x00;

#endif

#if OS_EVENT_TBL_SIZE > 2

    *ptbl++            = 0x00;

#endif

#if OS_EVENT_TBL_SIZE > 3

    *ptbl++            = 0x00;

#endif

#if OS_EVENT_TBL_SIZE > 4

    *ptbl++            = 0x00;

#endif

#if OS_EVENT_TBL_SIZE > 5

    *ptbl++            = 0x00;

#endif

#if OS_EVENT_TBL_SIZE > 6

    *ptbl++            = 0x00;

#endif

#if OS_EVENT_TBL_SIZE > 7

    *ptbl              = 0x00;

#endif

}

Listing 6.6 Initializing the wait list. (Continued)
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L6.7(1) OS_EventTaskRdy() starts by determining the index into .OSEventTbl[] of the HPT, a
number between 0 and OS_LOWEST_PRIO/8 + 1.

L6.7(2) Then the bit mask of the HPT in .OSEventGrp is obtained (see Table 6.1 for possible values).

Listing 6.7 Making a task ready to run. 
INT8U  OS_EventTaskRdy (OS_EVENT *pevent, void *msg, INT8U msk)

{

    OS_TCB *ptcb;

    INT8U   x;

    INT8U   y;

    INT8U   bitx;

    INT8U   bity;

    INT8U   prio;

    y    = OSUnMapTbl[pevent->OSEventGrp];                                    (1)

    bity = OSMapTbl[y];                                                       (2)

    x    = OSUnMapTbl[pevent->OSEventTbl[y]];                                 (3)

    bitx = OSMapTbl[x];                                                       (4)

    prio = (INT8U)((y << 3) + x);                                             (5)

    if ((pevent->OSEventTbl[y] &= ~bitx) == 0x00) {                           (6)

        pevent->OSEventGrp &= ~bity;               

    }

    ptcb                 =  OSTCBPrioTbl[prio];                               (7)

    ptcb->OSTCBDly       =  0;                                                (8)

    ptcb->OSTCBEventPtr  = (OS_EVENT *)0;                                     (9)

#if ((OS_Q_EN > 0) && (OS_MAX_QS > 0)) || (OS_MBOX_EN > 0)

    ptcb->OSTCBMsg       = msg;                                              (10)

#else

    msg                  = msg;                       

#endif

    ptcb->OSTCBStat     &= ~msk;                                             (11)

    if (ptcb->OSTCBStat == OS_STAT_RDY) {                                    (12)

        OSRdyGrp        |=  bity;                                            (13)

        OSRdyTbl[y]     |=  bitx;

    }

    return (prio);                                                           (14)

}
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L6.7(3)

L6.7(4) OS_EventTaskRdy() then determines the bit position of the task in .OSEventTbl[], a value
between 0 and OS_LOWEST_PRIO/8 + 1, and the bit mask of the HPT in .OSEventTbl[] (see
Table 6.1 for possible values). 

L6.7(5) The priority of the task being made ready to run is determined by combining the x and y indi-
ces.

L6.7(6) At this point, you can extract the task from the wait list.  The code looks a little bit different
than what was presented in Listing 6.3, but otherwise, it works just the same.

L6.7(7) The task control block (TCB) of the task being readied contains information that needs to be
changed. Knowing the task’s priority, you can obtain a pointer to that TCB.

L6.7(8) Because the HPT is not waiting anymore, you need to make sure that OSTimeTick() does not
attempt to decrement the .OSTCBDly value of that task, which is done by forcing .OSTCBDly
to 0.

L6.7(9) The pointer to the ECB is forced to NULL because the HPT is no longer waiting on this ECB. 

L6.7(10) A message is sent to the HPT if OS_EventTaskRdy() is called by the POST functions for mes-
sage mailboxes and message queues. This message is passed as an argument and needs to be
placed in the task’s TCB. 

L6.7(11) When OS_EventTaskRdy() is called, the msk argument contains the appropriate bit mask to
clear the bit in .OSTCBStat, which corresponds to the type of event signaled (OS_STAT_SEM,
OS_STAT_MUTEX, OS_STAT_MBOX, or OS_STAT_Q).

L6.7(12)

L6.7(13) If .OSTCBStat indicates that the task is now ready to run, OS_EventTaskRdy() inserts this
task in µC/OS-II’s ready list. Note that the task might not be ready to run because it could have
been explicitly suspended [see Section 4.07, “Suspending a Task, OSTaskSuspend()”, and
Section 4.08, “Resuming a Task, OSTaskResume()”].

L6.7(14) OS_EventTaskRdy() returns the priority of the task readied. 

Note that OS_EventTaskRdy() is called with interrupts disabled.

6.06 Making a Task Wait for an Event,
OS_EventTaskWait()

Listing 6.8 shows the code for OS_EventTaskWait(). This function is called by the PEND functions of a
semaphore, mutex, message mailbox, and message queue when a task must wait on an ECB. In other
words, OS_EventTaskWait() removes the current task from the ready list and places it in the wait list of
the ECB.
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L6.8(1) The pointer to the ECB is placed in the task’s TCB, linking the task to the event control
block.

L6.8(2) The task is removed from the ready list.

L6.8(3) The task is placed in the wait list for the ECB.

6.07 Making a Task Ready Because of a Timeout, 
OS_EventTO()

Listing 6.9 shows the code for OS_EventTO().  This function is called by PEND functions for a sema-
phore, mutex, message mailbox, and message queue when OSTimeTick() has readied a task to run,
which means that the ECB was not signaled within the specified timeout period.

L6.9(1) OS_EventTO() must remove the task from the wait list of the ECB.  The code look a little bit
different than the code shown in Listing 6.3. However, it does the same thing.

L6.9(2) The task is then marked as being ready.

L6.9(3) The link to the ECB is finally removed from the task’s TCB.

You should note that OS_EventTO() is also called with interrupts disabled.

Listing 6.8 Making a task wait on an ECB. 
void  OS_EventTaskWait (OS_EVENT *pevent)

{

    OSTCBCur->OSTCBEventPtr = pevent;                                          (1)

    if ((OSRdyTbl[OSTCBCur->OSTCBY] &= ~OSTCBCur->OSTCBBitX) == 0x00) {       (2)

        OSRdyGrp &= ~OSTCBCur->OSTCBBitY;        

    }

    pevent->OSEventTbl[OSTCBCur->OSTCBY] |= OSTCBCur->OSTCBBitX;              (3)

    pevent->OSEventGrp                   |= OSTCBCur->OSTCBBitY;

}

Listing 6.9 Making a task ready because of a timeout.
void  OS_EventTO (OS_EVENT *pevent)

{

    if ((pevent->OSEventTbl[OSTCBCur->OSTCBY] &= ~OSTCBCur->OSTCBBitX) == 0x00) {              (1)

        pevent->OSEventGrp &= ~OSTCBCur->OSTCBBitY;

    }

    OSTCBCur->OSTCBStat     = OS_STAT_RDY;                                                    (2)

    OSTCBCur->OSTCBEventPtr = (OS_EVENT *)0;                                                  (3)

}
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Chapter 7

Semaphore Management
µC/OS-II semaphores consist of two elements: a 16-bit unsigned integer used to hold the semaphore
count (0 to 65,535) and a list of tasks waiting for the semaphore count to be greater than 0.  µC/OS-II pro-
vides six services to access semaphores: OSSemAccept(), OSSemCreate(), OSSemDel(), OSSemPend(),
OSSemPost() and OSSemQuery().

To enable µC/OS-II semaphore services, you must set the configuration constants in OS_CFG.H.
Specifically, Table 7.1 shows which services are compiled, based on the value of configuration constants
found in OS_CFG.H.  You should note that none of the semaphore services are enabled when OS_SEM_EN
is set to 0.  To enable the feature (i.e., service), simply set the configuration constant to 1.  You should
notice that OSSemCreate(), OSSemPend(), and OSSemPost() cannot be individually disabled as can the
other services.  That’s because they are always needed when you enable µC/OS-II semaphore manage-
ment.

Figure 7.1 shows a flow diagram to illustrate the relationship between tasks, ISRs, and a semaphore.
Note that the symbology used to represent a semaphore is either a key or a flag. You use a key symbol in
such flow diagrams if the semaphore is used to access shared resources. The N next to the key represents
how many resources are available.  N is 1 for a binary semaphore. Use a flag symbol when a semaphore
is used to signal the occurrence of an event.  N in this case represents the number of times the event can
be signaled.  The hourglass represents a timeout that can be specified with the OSSemPend() call.

Table 7.1 Semaphore configuration constants in OS_CFG.H.

µC/OS-II Semaphore Service Enabled when set to 1 in OS_CFG.H
OSSemAccept() OS_SEM_ACCEPT_EN

OSSemCreate()

OSSemDel() OS_SEM_DEL_EN

OSSemPend()

OSSemPost()

OSSemQuery() OS_SEM_QUERY_EN
 165
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As you can see from Figure 7.1, a task or an ISR can call OSSemAccept(), OSSemPost(), or
OSSemQuery(). However, only tasks are allowed to call OSSemDel() or OSSemPend().

Figure 7.1 Relationships between tasks, ISRs, and a semaphore.

7.00 Creating a Semaphore, OSSemCreate()
A semaphore needs to be created before it can be used. You create a semaphore by calling OSSemCreate()
and specifying the initial count of the semaphore. The initial value of a semaphore can be between 0 and
65,535. If you use the semaphore to signal the occurrence of one or more events, you typically initialize
the semaphore to 0. If you use the semaphore to access a single shared resource, you need to initialize the
semaphore to 1 (i.e., use it as a binary semaphore). Finally, if the semaphore allows your application to
obtain any one of n identical resources, initialize the semaphore to n and use it as a counting semaphore.

The code to create a semaphore is shown in Listing 7.1. 

Listing 7.1 Creating a semaphore. 
OS_EVENT  *OSSemCreate (INT16U cnt)

{

#if OS_CRITICAL_METHOD == 3              

    OS_CPU_SR  cpu_sr;                                                   (1)

#endif    

    OS_EVENT  *pevent;

    if (OSIntNesting > 0) {                                              (2)

        return ((OS_EVENT *)0);          

    }

    OS_ENTER_CRITICAL();

    pevent = OSEventFreeList;                                            (3)

    if (OSEventFreeList != (OS_EVENT *)0) {                              (4)

        OSEventFreeList = (OS_EVENT *)OSEventFreeList->OSEventPtr;       (5)

    }

Task

ISR

Task
OSSemAccept()
OSSemPend()
OSSemQuery()

OSSemCreate()
OSSemDel()
OSSemPost()

OSSemPost()

OR

N N
ISROSSemAccept()
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L7.1(1) A local variable called cpu_sr to support OS_CRITICAL_METHOD #3 is allocated. 

L7.1(2) OSSemCreate() starts by making sure you are not calling this function from an ISR because
this is not allowed.  All kernel objects need to be created from task-level code or before mul-
titasking starts. 

L7.1(3) OSSemCreate() then attempts to obtain an ECB from the free list of ECBs (see Figure 6.5,
page 160). 

L7.1(4)

L7.1(5) The linked list of free ECBs is adjusted to point to the next free ECB.  

L7.1(6) 

L7.1(7) If an ECB is available, the ECB type is set to OS_EVENT_TYPE_SEM.  Other OSSem???() func-
tion calls check this structure member to make sure that the ECB is of the proper type (i.e., a
semaphore).  This prevents you from calling OSSemPost() on an ECB that was created for
use as a message mailbox (see Chapter 10, “Message Mailbox Management”).

L7.1(8) Next, the desired initial count for the semaphore is stored in the ECB.  

L7.1(9) The .OSEventPtr field is then initialized to point to NULL because it doesn’t belong to the
free ECB linked list anymore.

L7.1(10) The wait list is then initialized by calling OS_EventWaitListInit() [see Section 6.04, “Ini-
tializing an ECB, OS_EventWaitListInit()”]. Because the semaphore is being initial-
ized, there are no tasks waiting for it and thus, OS_EventWaitListInit() clears
.OSEventGrp and .OSEventTbl[].

L7.1(11) Finally, OSSemCreate() returns a pointer to the ECB. This pointer must be used in subsequent
calls to manipulate semaphores OSSemAccept(), OSSemDel(), OSSemPend(), OSSemPost()
and OSSemQuery(). The pointer is basically used as the semaphore’s handle.  If no more ECBs
exist, OSSemCreate() returns a NULL pointer.  You should make it a habit to check the return
values to ensure that you are getting the desired results. Passing NULL pointers to µC/OS-II
does not make it fail because µC/OS-II validates arguments (only if OS_ARG_CHK_EN is set to
1, though).

Figure 7.2 shows the content of the ECB just before OSSemCreate() returns.

    OS_EXIT_CRITICAL();

    if (pevent != (OS_EVENT *)0) {                                       (6)

        pevent->OSEventType = OS_EVENT_TYPE_SEM;                         (7)

        pevent->OSEventCnt  = cnt;                                       (8)

        pevent->OSEventPtr  = (void *)0;                                 (9)

        OS_EventWaitListInit(pevent);                                   (10)

    }

    return (pevent);                                                    (11)

}

Listing 7.1 Creating a semaphore. (Continued)
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Figure 7.2 ECB just before OSSemCreate() returns.

7.01 Deleting a Semaphore, OSSemDel()
The code to delete a semaphore is shown in Listing 7.2, and code is only generated by the compiler if
OS_SEM_DEL_EN is set to 1 in OS_CFG.H. You must use this function with caution because multiple tasks
could attempt to access a deleted semaphore. You should always use this function with great care.  Gen-
erally speaking, before you delete a semaphore, you should first delete all the tasks that access the sema-
phore. 

Listing 7.2 Deleting a semaphore. 
OS_EVENT  *OSSemDel (OS_EVENT *pevent, INT8U opt, INT8U *err)

{

#if OS_CRITICAL_METHOD == 3  

    OS_CPU_SR  cpu_sr;

#endif    

    BOOLEAN    tasks_waiting;

OS_EVENT

OS_EVENT_TYPE_SEM

cnt

.OSEventTbl[]

(void *)0

1 0234567

57 56585960616263

pevent

.OSEventGrp

ALL
initialized 
to 
0x00

.OSEventCnt

0x00

.OSEventPtr

.OSEventType
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    if (OSIntNesting > 0) {                                                   (1)

        *err = OS_ERR_DEL_ISR;

        return (pevent);

    }

#if OS_ARG_CHK_EN > 0

    if (pevent == (OS_EVENT *)0) {                                              (2)

        *err = OS_ERR_PEVENT_NULL;

        return (pevent);

    }

    if (pevent->OSEventType != OS_EVENT_TYPE_SEM) {                           (3)

        *err = OS_ERR_EVENT_TYPE;

        return (pevent);

    }

#endif

    OS_ENTER_CRITICAL();

    if (pevent->OSEventGrp != 0x00) {                                         (4)

        tasks_waiting = TRUE;        

    } else {

        tasks_waiting = FALSE;

    }

    switch (opt) {

        case OS_DEL_NO_PEND:  

             if (tasks_waiting == FALSE) {                                    (5)

                 pevent->OSEventType = OS_EVENT_TYPE_UNUSED;                  (6)

                 pevent->OSEventPtr  = OSEventFreeList;                       (7)

                 OSEventFreeList     = pevent;         

                 OS_EXIT_CRITICAL();

                 *err = OS_NO_ERR;

                 return ((OS_EVENT *)0);                                      (8)

             } else {

                 OS_EXIT_CRITICAL();

                 *err = OS_ERR_TASK_WAITING;

                 return (pevent);

             }

Listing 7.2 Deleting a semaphore. (Continued)
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L7.2(1) OSSemDel() starts by making sure that this function is not called from an ISR because that’s
not allowed.

L7.2(2)

L7.2(3) OSSemDel() validates pevent to ensure that it’s not a NULL pointer and that it points to an
ECB that was created as a semaphore.

L7.2(4) OSSemDel() then determines whether there are any tasks waiting on the semaphore.  The flag
tasks_waiting is set accordingly.

Based on the option (i.e., opt) specified in the call, OSSemDel() either deletes the sema-
phore only if no tasks are pending on the semaphore (opt == OS_DEL_NO_PEND) or deletes
the semaphore even if tasks are waiting (opt == OS_DEL_ALWAYS).

L7.2(5)

L7.2(6)

L7.2(7) When opt is set to OS_DEL_NO_PEND and no task is waiting on the semaphore, OSSemDel()
marks the ECB as unused, and the ECB is returned to the free list of ECBs.   This action
allows another semaphore (or any other ECB-based object) to be created. 

 L7.2(8) You should note that OSSemDel() returns a NULL pointer because, at this point, the semaphore
should no longer be accessed through the original pointer.  OSSemDel() returns an error code
if tasks are waiting on the semaphore (i.e., OS_ERR_TASK_WAITING) because, by specifying
OS_DEL_NO_PEND, you indicated that you didn’t want to delete the semaphore if tasks are
waiting on the semaphore.

        case OS_DEL_ALWAYS:                                                   (9)

             while (pevent->OSEventGrp != 0x00) {                            (10)

                 OS_EventTaskRdy(pevent, (void *)0, OS_STAT_SEM);

             }

             pevent->OSEventType = OS_EVENT_TYPE_UNUSED;                     (11)

             pevent->OSEventPtr  = OSEventFreeList;                          (12)

             OSEventFreeList     = pevent;         

             OS_EXIT_CRITICAL();

             if (tasks_waiting == TRUE) {          

                 OS_Sched();                                                 (13)

             }

             *err = OS_NO_ERR;

             return ((OS_EVENT *)0);                                         (14)

        default:

             OS_EXIT_CRITICAL();

             *err = OS_ERR_INVALID_OPT;

             return (pevent);

    }

}

Listing 7.2 Deleting a semaphore. (Continued)
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L7.2(9)

L7.2(10) When opt is set to OS_DEL_ALWAYS, then all tasks waiting on the semaphore are readied.
Each task thinks it has access to the semaphore. Of course, that’s a dangerous outcome
because the whole point of having a semaphore could be to protect against multiple accesses
to a resource.

L7.2(11)

L7.2(12) After all pending tasks are readied, OSSemDel() marks the ECB as unused, and the ECB is
returned to the free list of ECBs.

L7.2(13) The scheduler is called only if tasks were waiting on the semaphore.

L7.2(14) Again, you should note that OSSemDel() returns a NULL pointer because, at this point, the
semaphore should no longer be accessed through the original pointer.

7.02 Waiting on a Semaphore (Blocking),
OSSemPend()

The code to wait on a semaphore is shown in Listing 7.3.  

Listing 7.3 Waiting on a semaphore. 
void  OSSemPend (OS_EVENT *pevent, INT16U timeout, INT8U *err)

{

#if OS_CRITICAL_METHOD == 3

    OS_CPU_SR  cpu_sr;

#endif    

    if (OSIntNesting > 0) {                                                   (1)

        *err = OS_ERR_PEND_ISR;

        return;

    }

#if OS_ARG_CHK_EN > 0

    if (pevent == (OS_EVENT *)0) {                                            (2)

        *err = OS_ERR_PEVENT_NULL;

        return;

    }

    if (pevent->OSEventType != OS_EVENT_TYPE_SEM) {                           (3)

        *err = OS_ERR_EVENT_TYPE;

        return;

    }

#endif

    OS_ENTER_CRITICAL();
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L7.3(1) OSSemPend() checks to see if an ISR called the function.  It doesn’t make sense to call
OSSemPend() from an ISR because an ISR cannot be made to wait.  Instead, you should call
OSSemAccept() (see Section 7.04, “Getting a Semaphore Without Waiting (Non-blocking),
OSSemAccept()”).

L7.3(2)

L7.3(3) If OS_ARG_CHK_EN is set to 1,  OSSemPend() checks that pevent is not a NULL pointer and that
OSSemCreate() has created the ECB.

L7.3(4)

L7.3(5)

L7.3(6) If the semaphore is available (its count is nonzero), the count is decremented, and the function
returns to its caller with an error code indicating success. If your code calls OSSemPend(), you
want this outcome because it indicates that your code can proceed and access the resource (if
OSSemPend() is used to guard a shared resource). This also happens to be the fastest path
through OSSemPend().

L7.3(6) If the semaphore is not available (the count was zero), OSSemPend() checks to see if an ISR
called the function.  It doesn’t make sense to call OSSemPend() from an ISR because an ISR
cannot be made to wait.  Instead, you should call OSSemAccept() [see Section 7.04, “Getting
a Semaphore Without Waiting (Non-blocking), OSSemAccept()”].  I decided to add this
check just in case.

    if (pevent->OSEventCnt > 0) {                                             (4)

        pevent->OSEventCnt--;                                                 (5)

        OS_EXIT_CRITICAL();

        *err = OS_NO_ERR;                                                     (6)

        return;

    }

    OSTCBCur->OSTCBStat |= OS_STAT_SEM;                                       (7)

    OSTCBCur->OSTCBDly   = timeout;                                           (8)

    OS_EventTaskWait(pevent);                                                 (9)

    OS_EXIT_CRITICAL();

    OS_Sched();                                                              (10)

    OS_ENTER_CRITICAL();

    if (OSTCBCur->OSTCBStat & OS_STAT_SEM) {                                 (11)

        OS_EventTO(pevent);                                                  (12)

        OS_EXIT_CRITICAL();

        *err = OS_TIMEOUT;                                                   (13)

        return;

    }

    OSTCBCur->OSTCBEventPtr = (OS_EVENT *)0;                                 (14)

    OS_EXIT_CRITICAL();

    *err = OS_NO_ERR;

}

Listing 7.3 Waiting on a semaphore. (Continued)
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If the semaphore count is zero, the calling task needs to be put to sleep until another task (or
an ISR) signals the semaphore [see Section 7.03, “Signaling a Semaphore, OSSemPost()”].
OSSemPend() allows you to specify a timeout value (in integral number of ticks) as one of its
arguments (i.e., timeout).  This feature is useful to avoid waiting indefinitely for the semaphore.
If the value passed is nonzero, OSSemPend() suspends the task until the semaphore is signaled
or the specified timeout period expires.  Note that a timeout value of 0 indicates that the task is
willing to wait forever for the semaphore to be signaled.

L7.3(7) To put the calling task to sleep, OSSemPend() sets the status flag in the task’s TCB to indicate
that the task is suspended while waiting for a semaphore.

L7.3(8) The timeout is also stored in the TCB so that it can be decremented by OSTimeTick().  You
should recall (see Section 3.11, “Clock Tick”) that OSTimeTick() decrements each of the
created task’s .OSTCBDly field if the count is nonzero.

L7.3(9) The actual work of putting the task to sleep is done by OS_EventTaskWait() [see Section
6.06, “Making a Task Wait for an Event, OS_EventTaskWait()”].

L7.3(10) Because the calling task is no longer ready to run, the scheduler is called to run the next
highest priority task that is ready to run.  As far as your task is concerned, it made a call to
OSSemPend(), and it doesn’t know that it is suspended until the semaphore is signaled.

L7.3(11) When the semaphore is signaled (or the timeout period expires) OSSemPend() resumes exe-
cution immediately after the call to OS_Sched().  OSSemPend() then checks to see if the TCB
status flag is still set to indicate that the task is waiting for the semaphore.  If the task is still
waiting for the semaphore, it must not have been signaled by an OSSemPost() call.  Indeed,
the task must have been readied by OSTimeTick(), indicating that the timeout period has
expired.

L7.3(12)

L7.3(13) In this case, the task is removed from the wait list for the semaphore by calling OS_EventTO(),
and an error code is returned to the task that called OSSemPend() to indicate that a timeout
occurred.  If the status flag in the task’s TCB doesn’t have the OS_STAT_SEM bit set, the sema-
phore must have been signaled by OSSemPost() [see Section 7.03, “Signaling a Semaphore,
OSSemPost()”] and the task that called OSSemPend() can now conclude that it has the sema-
phore.

L7.3(14) Finally, the link to the ECB is removed.

7.03 Signaling a Semaphore, OSSemPost()
The code to signal a semaphore is shown in Listing 7.4. 

Listing 7.4 Signaling a semaphore. 
INT8U  OSSemPost (OS_EVENT *pevent)

{

#if OS_CRITICAL_METHOD == 3

    OS_CPU_SR  cpu_sr;                               

#endif    
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L7.4(1)

L7.4(2) If OS_ARG_CHK_EN is set to 1,   OSSemPost() checks that pevent is not a NULL pointer and
that the ECB being pointed to by pevent has been created by OSSemCreate().

L7.4(3) OSSemPost() then checks to see if any tasks are waiting on the semaphore. Tasks waiting are
when the .OSEventGrp field in the ECB contains a nonzero value.

L7.4(4)

L7.4(5) OS_EventTaskRdy() removes the highest priority task waiting for the semaphore from the
wait list [see Section 6.05, “Making a Task Ready, OS_EventTaskRdy()”]. The task is
ready-to-run. OS_Sched() is then called to see if the task made ready is now the highest pri-
ority task ready-to-run.  If it is, a context switch results [only if OSSemPost() is called from a
task] and the readied task is executed. In other words, the task that called OSSemPost() does
not continue execution because OSSemPost() made a more important task ready to run and
µC/OS-II does thus resume execution of that task. If the readied task is not the highest prior-
ity task, OS_Sched() returns, and the task that called OSSemPost()continues execution.

#if OS_ARG_CHK_EN > 0

    if (pevent == (OS_EVENT *)0) {                                            (1)

        return (OS_ERR_PEVENT_NULL);

    }

    if (pevent->OSEventType != OS_EVENT_TYPE_SEM) {                           (2)

        return (OS_ERR_EVENT_TYPE);

    }

#endif

    OS_ENTER_CRITICAL();

    if (pevent->OSEventGrp != 0x00) {                                         (3)

        OS_EventTaskRdy(pevent, (void *)0, OS_STAT_SEM);                      (4)

        OS_EXIT_CRITICAL();

        OS_Sched();                                                           (5)

        return (OS_NO_ERR);

    }

    if (pevent->OSEventCnt < 65535) { 

        pevent->OSEventCnt++;                                                 (6)

        OS_EXIT_CRITICAL();

        return (OS_NO_ERR);

    }

    OS_EXIT_CRITICAL();

    return (OS_SEM_OVF);                                                      (7)

}

Listing 7.4 Signaling a semaphore. (Continued)
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L7.4(6)

L7.4(7) If no tasks are waiting on the semaphore, the semaphore count simply gets incremented.
Note that a counting semaphore is implemented in µC/OS-II using a 16-bit variable, and
OSSemPost() ensures that the semaphore does not overflow.

It’s important to note that a context switch does not occur if an ISR calls OSSemPost() because con-
text switching from an ISR can only occur when OSIntExit() is called at the completion of the ISR
from the last nested ISR (see Section 3.10, “Interrupts Under µC/OS-II”).

7.04 Getting a Semaphore Without Waiting 
(Non-blocking), OSSemAccept()

It is possible to obtain a semaphore without putting a task to sleep if the semaphore is not available.
This action is accomplished by calling OSSemAccept(), as shown in Listing 7.5. 

Listing 7.5 Getting a semaphore without waiting.
INT16U  OSSemAccept (OS_EVENT *pevent)

{

#if OS_CRITICAL_METHOD == 3

    OS_CPU_SR  cpu_sr;

#endif    

    INT16U     cnt;

#if OS_ARG_CHK_EN > 0

    if (pevent == (OS_EVENT *)0) {                                            (1)

        return (0);

    }

    if (pevent->OSEventType != OS_EVENT_TYPE_SEM) {                           (2)

        return (0);

    }

#endif

    OS_ENTER_CRITICAL();

    cnt = pevent->OSEventCnt;                                                 (3)

    if (cnt > 0) {                                                            (4)

        pevent->OSEventCnt--;                                                 (5)

    }

    OS_EXIT_CRITICAL();

    return (cnt);                                                             (6)

}
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L7.5(1)

L7.5(2) If OS_ARG_CHK_EN is set to 1 in OS_CFG.H, OSSemAccept() starts by checking that pevent is
not a NULL pointer and that the ECB being pointed to by pevent has been created by
OSSemCreate().

L7.5(3)

L7.5(4) OSSemAccept() then gets the current semaphore count to determine whether the semaphore
is available (i.e., a nonzero value).

L7.5(5) The count is decremented only if the semaphore is available.

L7.5(6) Finally, the original count of the semaphore is returned to the caller.

The code that calls OSSemAccept() needs to examine the returned value. A returned value of zero
indicates that the semaphore is not available; a nonzero value indicates that the semaphore is available.
Furthermore, a nonzero value indicates to the caller the number of resources that are available. Keep in
mind that, in this case, one of the resources has been allocated to the calling task because the count has
been decremented.

An ISR could use OSSemAccept(). However, it’s not recommended to have a semaphore shared
between a task and an ISR.  Semaphores are supposed to be task-level objects. If a semaphore is used as
a signalling object between an ISR and a task, the ISR should only POST to the semaphore.

7.05 Obtaining the Status of a Semaphore, 
OSSemQuery()

OSSemQuery() allows your application to take a snapshot of an ECB that is used as a semaphore
(Listing 7.6).  OSSemQuery() receives two arguments: pevent contains a pointer to the semaphore,
which OSSemCreate() returns when the semaphore is created, and pdata is a pointer to a data struc-
ture (OS_SEM_DATA, see uCOS_II.H) that holds information about the semaphore. Your application
thus needs to allocate a variable of type OS_SEM_DATA that is used to receive the information about the
desired semaphore. I decided to use a new data structure because the caller should only be concerned
with semaphore-specific data, as opposed to the more generic OS_EVENT data structure, which con-
tains two additional fields (.OSEventType and .OSEventPtr). OS_SEM_DATA contains the current
semaphore count (.OSCnt) and the list of tasks waiting on the semaphore (.OSEventTbl[] and
.OSEventGrp).  

Listing 7.6 Obtaining the status of a semaphore. 
INT8U  OSSemQuery (OS_EVENT *pevent, OS_SEM_DATA *pdata)

{

#if OS_CRITICAL_METHOD == 3

    OS_CPU_SR  cpu_sr;

#endif    

    INT8U     *psrc;

    INT8U     *pdest;
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#if OS_ARG_CHK_EN > 0

    if (pevent == (OS_EVENT *)0) {                                            (1)

        return (OS_ERR_PEVENT_NULL);

    }

    if (pevent->OSEventType != OS_EVENT_TYPE_SEM) {                           (2)

        return (OS_ERR_EVENT_TYPE);

    }

#endif

    OS_ENTER_CRITICAL();

    pdata->OSEventGrp = pevent->OSEventGrp;                                   (3)

    psrc              = &pevent->OSEventTbl[0]; 

    pdest             = &pdata->OSEventTbl[0];

#if OS_EVENT_TBL_SIZE > 0

    *pdest++          = *psrc++;

#endif

#if OS_EVENT_TBL_SIZE > 1

    *pdest++          = *psrc++;

#endif

#if OS_EVENT_TBL_SIZE > 2

    *pdest++          = *psrc++;

#endif

#if OS_EVENT_TBL_SIZE > 3

    *pdest++          = *psrc++;

#endif

#if OS_EVENT_TBL_SIZE > 4

    *pdest++          = *psrc++;

#endif

#if OS_EVENT_TBL_SIZE > 5

    *pdest++          = *psrc++;

#endif

#if OS_EVENT_TBL_SIZE > 6

    *pdest++          = *psrc++;

#endif

Listing 7.6 Obtaining the status of a semaphore. (Continued)
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L7.6(1) 

L7.6(2) As always, if OS_ARG_CHK_EN is set to 1, OSSemQuery() checks that pevent is not a NULL
pointer and that it points to an ECB containing a semaphore.  

L7.6(3) OSSemQuery() then copies the wait list from the OS_EVENT structure to the OS_SEM_DATA
structure.  You should note that I decided to do the copy as inline code instead of using a loop
for performance reasons.

L7.6(4) Finally, OSSemQuery() copies the current semaphore count from the OS_EVENT structure to
the OS_SEM_DATA structure.

#if OS_EVENT_TBL_SIZE > 7

    *pdest            = *psrc;

#endif

    pdata->OSCnt      = pevent->OSEventCnt;                                   (4)

    OS_EXIT_CRITICAL();

    return (OS_NO_ERR);

}

Listing 7.6 Obtaining the status of a semaphore. (Continued)
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Chapter 8

Mutual Exclusion Semaphores
Mutual exclusion semaphores (mutexes) are used by tasks to gain exclusive access to resources.
Mutexes are binary semaphores that have additional features beyond the normal semaphores mechanism
provided by µC/OS-II.  

A mutex is used by your application code to reduce the priority inversion problem as described in
Section 2.16.  A priority inversion occurs when a low priority task owns a resource needed by a high pri-
ority task.  In order to reduce priority inversion, the kernel can increase the priority of the lower priority
task to the priority of the higher priority task until the lower priority task is done with the resource.

In order to implement mutexes, a real-time kernel needs to provide the ability to support multiple
tasks at the same priority. Unfortunately, µC/OS-II doesn’t allow multiple tasks at the same priority.
However, there is a way around this problem. What if a priority just above the highest priority task that
needs to access the mutex was reserved by the mutex to allow a lower priority task to be raised in prior-
ity?

Let’s use an example to illustrate how µC/OS-II mutexes work. Listing 8.1 shows three tasks that
might need to access a common resource.  To access the resource, each task must pend on the mutex
ResourceMutex. Task #1 has the highest priority (10), task #2 has a medium priority (15), and task #3,
the lowest (20).  An unused priority just above the highest task priority (i.e., priority 9) is reserved as the
priority inheritance priority (PIP). 

Listing 8.1 Mutex use example. 
OS_EVENT *ResourceMutex;

OS_STK    TaskPrio10Stk[1000];

OS_STK    TaskPrio15Stk[1000];

OS_STK    TaskPrio20Stk[1000];
 179
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void main (void)

{

    INT8U err;

    OSInit();                                                                 (1)

     ---------- Application Initialization ----------  

    OSMutexCreate(9, &err);                                                   (2)

    OSTaskCreate(TaskPrio10, (void *)0, &TaskPrio10Stk[999], 10);             (3)

    OSTaskCreate(TaskPrio15, (void *)0, &TaskPrio15Stk[999], 15);

    OSTaskCreate(TaskPrio20, (void *)0, &TaskPrio20Stk[999], 20);

     ---------- Application Initialization ---------- 

    OSStart();                                                                (4)

}

void TaskPrio10 (void *pdata)                                       /* Task #1 */

{

    INT8U err;

    pdata = pdata;

    while (1) {

         --------- Application Code ---------- 

        OSMutexPend(ResourceMutex, 0, &err);

         ------- Access common resource ------ 

        OSMutexPost(ResourceMutex);

         --------- Application Code ---------- 

    }

}

Listing 8.1 Mutex use example. (Continued)
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L8.1(1)

L8.1(2) As shown in main(), µC/OS-II is initialized and a mutex is created by calling OSMutexCreate().
You should note that OSMutexCreate() is passed the PIP (i.e., 9).

L8.1(3)

L8.1(4) The three tasks are then created, and µC/OS-II is started.

Suppose that this application has been running for a while and that, at some point, task #3 accesses
the common resource first and thus acquires the mutex. Task #3 runs for a while and then gets pre-
empted by task #1. Task #1 needs the resource and thus attempts to acquire the mutex (by calling
OSMutexPend()). In this case, OSMutexPend() notices that a higher priority task needs the resource

void TaskPrio15 (void *pdata)                                       /* Task #2 */

{

    INT8U err;

    pdata = pdata;

    while (1) {

         --------- Application Code ---------- 

        OSMutexPend(ResourceMutex, 0, &err);

         ------- Access common resource ------ 

        OSMutexPost(ResourceMutex);

         --------- Application Code ---------- 

    }

}

void TaskPrio20 (void *pdata)                                       /* Task #3 */

{

    INT8U err;

    pdata = pdata;

    while (1) {

         --------- Application Code ---------- 

        OSMutexPend(ResourceMutex, 0, &err);

         ------- Access common resource ------ 

        OSMutexPost(ResourceMutex);

         --------- Application Code ---------- 

    }

}

Listing 8.1 Mutex use example. (Continued)
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and thus raises the priority of task #3 to 9, which forces a context switch back to task #3.  Task #3 pro-
ceeds and hopefully releases the resource quickly. When done with the resource, task #3 calls
OSMutexPost() to release the mutex.  OSMutexPost() notices that the mutex was owned by a
lower priority task that got its priority raised and thus, returns task #3 to its original priority.
OSMutexPost() notices that a higher priority task (i.e., task #1) needs access to the resource, gives
the resource to task #1, and perform a context switch to task #1.

µC/OS-II's mutexes consist of three elements: a flag indicating whether the mutex is available (0 or
1), a priority to assign the task that owns the mutex in case a higher priority task attempts to gain access
to the mutex, and a list of tasks waiting for the mutex. 

µC/OS-II provides six services to access mutexes: OSMutexCreate(), OSMutexDel(), OSMutexPend(),
OSMutexPost(), OSMutexAccept(), and OSMutexQuery().

To enable µC/OS-II mutex services, you must set the configuration constants in OS_CFG.H.  Specifi-
cally, Table 8.1 shows which services are compiled, based on the value of configuration constants found
in OS_CFG.H.  You should note that none of the mutex services are enabled when OS_MUTEX_EN is set to
0.  To enable specific features (i.e., services) listed in Table 8.1, set the configuration constant to 1.  You
should notice that OSMutexCreate(), OSMutexPend(), and OSMutexPost() cannot be individually dis-
abled as can the other services.  That’s because they are always needed when you enable µC/OS-II’s
mutual exclusion semaphore management.

Figure 8.1 shows a flow diagram to illustrate the relationship between tasks and a mutex.  A mutex
can only be accessed by tasks.  Note that the symbology used to represent a mutex is a key.  The key
symbology shows that the mutex is used to access shared resources.

Figure 8.1 Relationship between tasks and a mutex.

Table 8.1 Mutex configuration constants in OS_CFG.H.

µC/OS-II mutex service Enabled when set to 1 in OS_CFG.H
OSMutexAccept() OS_MUTEX_ACCEPT_EN

OSMutexCreate()

OSMutexDel() OS_MUTEX_DEL_EN

OSMutexPend()

OSMutexPost()

OSMutexQuery() OS_MUTEX_QUERY_EN

Task Task

OSMutexPend()
OSMutexAccept()
OSMutexQuery()

OSMutexCreate()
OSMutexDel()
OSMutexPost()
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8.00 Creating a Mutex, OSMutexCreate()
A mutex needs to be created before it can be used. Creating a mutex is accomplished by calling
OSMutexCreate(). The initial value of a mutex is always set to 1, which indicates that the resource is
available. The code to create a mutex is shown in Listing 8.2. 

Listing 8.2 Creating a mutex. 
OS_EVENT *OSMutexCreate (INT8U prio, INT8U *err)

{

#if OS_CRITICAL_METHOD == 3                                 

    OS_CPU_SR  cpu_sr;

#endif    

    OS_EVENT *pevent;

    if (OSIntNesting > 0) {                                                   (1)

        *err = OS_ERR_CREATE_ISR;                               

        return ((OS_EVENT *)0);

    }

#if OS_ARG_CHK_EN

    if (prio >= OS_LOWEST_PRIO) {                                             (2)

        *err = OS_PRIO_INVALID;

        return ((OS_EVENT *)0);

    }

#endif

    OS_ENTER_CRITICAL();

    if (OSTCBPrioTbl[prio] != (OS_TCB *)0) {                                  (3)

        *err = OS_PRIO_EXIST;                                   

        OS_EXIT_CRITICAL();                                     

        return ((OS_EVENT *)0);                            

    }

    OSTCBPrioTbl[prio] = (OS_TCB *)1;                                         (4)

    pevent             = OSEventFreeList;                                     (5)

    if (pevent == (OS_EVENT *)0) {                              

        OSTCBPrioTbl[prio] = (OS_TCB *)0;                       

        OS_EXIT_CRITICAL();

        *err               = OS_ERR_PEVENT_NULL;                

        return (pevent);

    }

    OSEventFreeList     = (OS_EVENT *)OSEventFreeList->OSEventPtr;            (6)

    OS_EXIT_CRITICAL();
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L8.2(1) OSMutexCreate() starts by making sure it’s not called from an ISR because that’s not
allowed.

L8.2(2) OSMutexCreate() then verifies that the PIP is within a valid range, based on what you deter-
mined the lowest priority is for your application, as specified in OS_CFG.H.

L8.2(3) OSMutexCreate() then checks to see that there isn’t already a task assigned to the PIP.  A
NULL pointer in OSTCBPrioTbl[] indicates that the PIP is available.

L8.2(4) If an entry is available, OSMutexCreate() reserves the priority by placing a non-NULL pointer
in OSTCBPrioTbl[prio].  This action prevents you from using this priority to create other
tasks or other mutexes using this priority.

L8.2(5) OSMutexCreate() then attempts to obtain an event control block (ECB) from the free list of
ECBs.

L8.2(6) The linked list of free ECBs is adjusted to point to the next free ECB.  

L8.2(7) If an ECB is available, the ECB type is set to OS_EVENT_TYPE_MUTEX.  Other µC/OS-II ser-
vices check this field to make sure that the ECB is of the proper type.  This check prevents
you from calling OSMutexPost() on an ECB created for use as a message mailbox, for
example.

L8.2(8) OSMutexCreate() then sets the mutex value to available, and the PIP is stored.

It is worth noting that the .OSEventCnt field is used differently. Specifically, the upper 8 bits of
.OSEventCnt are used to hold the PIP, and the lower 8 bits are used to hold either the value of the mutex
when the resource is available (0xFF) or the priority of the task that owns the mutex (a value between 0
and 62). This configuration prevents having to add extra fields in an OS_EVENT structure and thus
reduces the amount of RAM needed by µC/OS-II.

L8.2(9) Because the mutex is being initialized, no tasks are waiting for it.  

L8.2(10) The wait list is then initialized by calling OSEventWaitListInit().

L8.2(11) Finally, OSMutexCreate() returns a pointer to the ECB.  This pointer must be used in subse-
quent calls to manipulate mutexes (OSMutexPend(), OSMutexPost(), OSMutexAccept(),
OSMutexDel(), and OSMutexQuery()). The pointer is used as the mutex’s handle. If there
were no more ECBs, OSMutexCreate() would have returned a NULL pointer.

Figure 8.2 shows the ECB just before returning from OSMutexCreate().

    pevent->OSEventType = OS_EVENT_TYPE_MUTEX;                                (7)

    pevent->OSEventCnt  = (prio << 8) | OS_MUTEX_AVAILABLE;                   (8)

    pevent->OSEventPtr  = (void *)0;                                          (9)

    OSEventWaitListInit(pevent);                                             (10)

    *err                = OS_NO_ERR;

    return (pevent);                                                         (11)

    }

}

Listing 8.2 Creating a mutex. (Continued)
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Figure 8.2 ECB just before OSMutexCreate() returns.   

8.01 Deleting a Mutex, OSMutexDel()
The code to delete a mutex is shown in Listing 8.3, this service is available only if OS_MUTEX_DEL_EN is
set to 1 in OS_CFG.H.  This function is dangerous to use because multiple tasks could attempt to access a
deleted mutex.  You should always use this function with great care.  Generally speaking, before you
delete a mutex, you should first delete all the tasks that can access the mutex. 

Listing 8.3 Deleting a mutex. 
OS_EVENT  *OSMutexDel (OS_EVENT *pevent, INT8U opt, INT8U *err)

{

#if OS_CRITICAL_METHOD == 3                                 

    OS_CPU_SR  cpu_sr;

#endif    

    BOOLEAN    tasks_waiting;

    if (OSIntNesting > 0) {                                                   (1)

        *err = OS_ERR_DEL_ISR;                                   

        return (pevent);

    }

#if OS_ARG_CHK_EN

    if (pevent == (OS_EVENT *)0) {                                            (2)

        *err = OS_ERR_PEVENT_NULL;

        return (pevent);

    }

OS_EVENT

OS_EVENT_TYPE_MUTEX

0xFF

.OSEventTbl[]

(void *)0

1 0234567

57 56585960616263

pevent

.OSEventGrp

ALL
initialized 
to 
0x00

.OSEventCnt

0x00

.OSEventPtr

.OSEventType

prio
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    if (pevent->OSEventType != OS_EVENT_TYPE_MUTEX) {                         (3)

        OS_EXIT_CRITICAL();

        *err = OS_ERR_EVENT_TYPE;

        return (pevent);

    }

#endif

    OS_ENTER_CRITICAL();

    if (pevent->OSEventGrp != 0x00) {                                          (4)

        tasks_waiting = TRUE;                                     

    } else {

        tasks_waiting = FALSE;                                    

    }

    switch (opt) {

        case OS_DEL_NO_PEND:                               

             if (tasks_waiting == FALSE) {                                    (5)

                 pevent->OSEventType = OS_EVENT_TYPE_UNUSED;                  (6)

                 pevent->OSEventPtr  = OSEventFreeList;                       (7)

                 OSEventFreeList     = pevent;             

                 OS_EXIT_CRITICAL();

                 *err = OS_NO_ERR;

                 return ((OS_EVENT *)0);                                      (8)

             } else {

                 OS_EXIT_CRITICAL();

                 *err = OS_ERR_TASK_WAITING;

                 return (pevent);

             }

        case OS_DEL_ALWAYS:                                                   (9)

             while (pevent->OSEventGrp != 0x00) {                            (10)

                 OS_EventTaskRdy(pevent, (void *)0, OS_STAT_MUTEX);

             }

             pevent->OSEventType = OS_EVENT_TYPE_UNUSED;                     (11)

             pevent->OSEventPtr  = OSEventFreeList;                          (12)

             OSEventFreeList     = pevent;                 

             OS_EXIT_CRITICAL();

             if (tasks_waiting == TRUE) {                                    (13)

                 OS_Sched();                                    

             }

             *err = OS_NO_ERR;

             return ((OS_EVENT *)0);                                         (14)

Listing 8.3 Deleting a mutex. (Continued)
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L8.3(1) OSMutexDel() makes sure that this function is not called from an ISR because that’s not
allowed.

L8.3(2)

L8.3(3) We then check the arguments passed to it — pevent cannot be a NULL pointer, and pevent
needs to point to a mutex.

L8.3(4) OSMutexDel() then determines whether any tasks are waiting on the mutex.  The flag
tasks_waiting is set accordingly.

Based on the option (i.e., opt) specified in the call, OSMutexDel() either deletes the
mutex only if no tasks are pending on the mutex (opt == OS_DEL_NO_PEND) or deletes the
mutex even if tasks are waiting (opt == OS_DEL_ALWAYS). 

L8.3(5)

L8.3(6)

L8.3(7) When opt is set to OS_DEL_NO_PEND and no task is waiting on the mutex, OSMutexDel()
marks the ECB as unused, and the ECB is returned to the free list of ECBs.   This process
allows another mutex (or any other ECB-based object) to be created.  You should note that
OSMutexDel() returns a NULL pointer [L8.3(8)] because, at this point, the mutex should no
longer be accessed through the original pointer.

L8.3(9)

L8.3(10) When opt is set to OS_DEL_ALWAYS, all tasks waiting on the mutex are readied.  Each task
thinks it has access to the mutex.  Of course, that’s a dangerous outcome because the whole
point of having a mutex is to protect against multiple accesses of a resource.  Again, you
should delete all the tasks that can access the mutex before you delete the mutex.

L8.3(11)

L8.3(12) After all pending tasks are readied, OSMutexDel() marks the ECB as unused, and the ECB is
returned to the free list of ECBs.

L8.3(13) The scheduler is called only if tasks were waiting on the mutex.  

L8.3(14) You should note that OSMutexDel() returns a NULL pointer because, at this point, the mutex
should no longer be accessed through the original pointer.

        default:

             OS_EXIT_CRITICAL();

             *err = OS_ERR_INVALID_OPT;

             return (pevent);

    }

}

Listing 8.3 Deleting a mutex. (Continued)
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8.02 Waiting on a Mutex (Blocking), OSMutexPend()
The code to wait on a mutex is shown in Listing 8.4.  

Listing 8.4 Waiting for a mutex. 
void OSMutexPend (OS_EVENT *pevent, INT16U timeout, INT8U *err)

{

#if OS_CRITICAL_METHOD == 3                             

    OS_CPU_SR  cpu_sr;

#endif    

    INT8U      pip;                                                    

    INT8U      mprio;                                       

    BOOLEAN    rdy;                                         

    OS_TCB    *ptcb;

    if (OSIntNesting > 0) {                                                                   (1)

        *err = OS_ERR_PEND_ISR;                                 

        return;

    }

#if OS_ARG_CHK_EN

    if (pevent == (OS_EVENT *)0) {                                                            (2)

        *err = OS_ERR_PEVENT_NULL;

        return;

    }

#endif

    OS_ENTER_CRITICAL();

#if OS_ARG_CHK_EN

    if (pevent->OSEventType != OS_EVENT_TYPE_MUTEX) {                                         (3)

        OS_EXIT_CRITICAL();

        *err = OS_ERR_EVENT_TYPE;

        return;

    }

#endif

                                                                                              (4)

    if ((INT8U)(pevent->OSEventCnt & OS_MUTEX_KEEP_LOWER_8) == OS_MUTEX_AVAILABLE) {

        pevent->OSEventCnt &= OS_MUTEX_KEEP_UPPER_8;                                          (5)

        pevent->OSEventCnt |= OSTCBCur->OSTCBPrio;                                            (6)

        pevent->OSEventPtr  = (void *)OSTCBCur;                                               (7)

        OS_EXIT_CRITICAL();

        *err  = OS_NO_ERR;

        return;

    }
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L8.4(1) Like all µC/OS-II pend calls, OSMutexPend() cannot be called from an ISR, and thus
OSMutexPend() checks for this condition first.

    pip   = (INT8U)(pevent->OSEventCnt >> 8);                                                 (8)

    mprio = (INT8U)(pevent->OSEventCnt & OS_MUTEX_KEEP_LOWER_8);                              (9)

    ptcb  = (OS_TCB *)(pevent->OSEventPtr);                                                  (10)

                                                                  

    if (ptcb->OSTCBPrio != pip && mprio > OSTCBCur->OSTCBPrio) {                             (11)

        if ((OSRdyTbl[ptcb->OSTCBY] & ptcb->OSTCBBitX) != 0x00) {                            (12)

                                                                                             (13)

                                                                       

            if ((OSRdyTbl[ptcb->OSTCBY] &= ~ptcb->OSTCBBitX) == 0x00) {

                OSRdyGrp &= ~ptcb->OSTCBBitY;

            }

            rdy = TRUE;                                                                      (14)

        } else {

            rdy = FALSE;                                                                     (15)

        }

        ptcb->OSTCBPrio         = pip;                                                       (16)

        ptcb->OSTCBY            = ptcb->OSTCBPrio >> 3;

        ptcb->OSTCBBitY         = OSMapTbl[ptcb->OSTCBY];

        ptcb->OSTCBX            = ptcb->OSTCBPrio & 0x07;

        ptcb->OSTCBBitX         = OSMapTbl[ptcb->OSTCBX];

        if (rdy == TRUE) {                                                                   (17)

            OSRdyGrp               |= ptcb->OSTCBBitY;                 

            OSRdyTbl[ptcb->OSTCBY] |= ptcb->OSTCBBitX;

        }

        OSTCBPrioTbl[pip]       = (OS_TCB *)ptcb;

    }

    OSTCBCur->OSTCBStat |= OS_STAT_MUTEX;                                                    (18)

    OSTCBCur->OSTCBDly   = timeout;                                                          (19)

    OS_EventTaskWait(pevent);                                                                 (20)

    OS_EXIT_CRITICAL();

    OS_Sched();                                                                              (21)

    OS_ENTER_CRITICAL();

    if (OSTCBCur->OSTCBStat & OS_STAT_MUTEX) {                                               (22)

        OS_EventTO(pevent);                                                                  (23)

        OS_EXIT_CRITICAL();

        *err = OS_TIMEOUT;                                                                   (24)

        return;

    }

    OSTCBCur->OSTCBEventPtr = (OS_EVENT *)0;                                                 (25)

    OS_EXIT_CRITICAL();

    *err = OS_NO_ERR; 

}

Listing 8.4 Waiting for a mutex. (Continued)
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L8.4(2)

L8.4(3) Assuming that the configuration constant OS_ARG_CHK_EN is set to 1, OSMutexPend() makes
sure that the handle pevent is not a NULL pointer and that OSMutexCreate() has created the
ECB being pointed to.

L8.4(4)

L8.4(5)

L8.4(6) The mutex is available if the lower 8 bits of .OSEventCnt are set to 0xFF (i.e.,
OS_MUTEX_AVAILABLE). If this is the case, OSMutexPend() grants the mutex to the
calling task, and OSMutexPend() sets the lower 8 bits of .OSEventCnt to the calling
task’s priority.

L8.4(7) OSMutexPend() then sets .OSEventPtr to point to the TCB of the calling task and returns.
At this point, the caller can proceed with accessing the resource because the return error code
is set to OS_NO_ERR.  Obviously, if you want the mutex, this is the outcome you want. This
also happens to be the fastest (normal) path through OSMutexPend().  

If the mutex is owned by another task, the calling task needs to be put to sleep until the
other task relinquishes the mutex [see OSMutexPost()].  OSMutexPend() allows you to spec-
ify a timeout value as one of its arguments (i.e., timeout). This feature is useful to avoid
waiting indefinitely for the mutex. If the value passed is nonzero, then OSMutexPend() sus-
pends the task until the mutex is signaled or the specified timeout period expires.  Note that a
timeout value of 0 indicates that the task is willing to wait forever for the mutex to be sig-
naled.

L8.4(8)

L8.4(9)

L8.4(10) Before the calling task is put to sleep, OSMutexPend() extracts the PIP of the mutex, the pri-
ority of the task that owns the mutex, and a pointer to the TCB of the task that owns the
mutex.

L8.4(11) If the owner’s priority is lower (a higher number) than the task that calls OSMutexPend()
then the priority of the task that owns the mutex is raised to the mutex’s PIP.  This action
allows the owner of the mutex to relinquish the mutex sooner.

L8.4(12) OSMutexPend() then determines if the task that owns the mutex is ready to run.

L8.4(13)

L8.4(14) If the task is ready to run, that task is made no longer ready to run at the owner’s priority, and
the flag rdy is set indicating that the mutex owner was ready to run.

L8.4(15) If the task was not ready to run, rdy is set accordingly.  The reason the flag is set is to deter-
mine whether we need to make the task ready to run at the new, higher priority (i.e., at the
PIP).

L8.4(16) OSMutexPend() then computes task control block (TCB) elements at the PIP.  You should
note that I could have saved this information in the OS_EVENT data structure when the mutex
was created in order to save processing time. However, saving this would have meant addi-
tional RAM for each OS_EVENT instantiation.

L8.4(17) From this information and the state of the rdy flag, we determine whether the mutex owner
needs to be made ready to run at the PIP.
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L8.4(18) To put the calling task to sleep, OSMutexPend() sets the status flag in the task’s TCB to indi-
cate that the task is suspended while waiting for a mutex.

L8.4(19) The timeout is also stored in the TCB so that it can be decremented by OSTimeTick().  You
should recall that OSTimeTick() decrements each of the created tasks .OSTCBDly fields if
they are nonzero.

L8.4(20) The actual work of putting the task to sleep is done by OS_EventTaskWait().

L8.4(21) Because the calling task is no longer ready to run, the scheduler is called to run the next high-
est priority task that is ready to run.

When the mutex is signaled (or the timeout period expires) and the task that called
OSMutexPend() is again the highest priority task, OS_Sched() returns.

L8.4(22) OSMutexPend() then checks to see if the TCB’s status flag is still set to indicate that the task
is waiting for the mutex.  If the task is still waiting for the mutex, then it must not have been
signaled by an OSMutexPost() call. Indeed, the task must have be readied by OSTimeTick(),
which indicates that the timeout period has expired.

L8.4(23)

L8.4(24) In this case, the task is removed from the wait list for the mutex by calling OS_EventTO(),
and an error code is returned to the task that called OSMutexPend() to indicate that a timeout
occurred.

If the status flag in the task’s TCB doesn’t have the OS_STAT_MUTEX bit set, then the
mutex must have been signaled, and the task that called OSMutexPend() can now conclude
that it has the mutex.

L8.4(25) Finally, the link to the ECB is removed.

8.03 Signaling a Mutex, OSMutexPost()
The code to signal a mutex is shown in Listing 8.5. 

Listing 8.5 Signaling a mutex. 
INT8U OSMutexPost (OS_EVENT *pevent)

{

#if OS_CRITICAL_METHOD == 3                               

    OS_CPU_SR  cpu_sr;

#endif    

    INT8U      pip;                                       

    INT8U      prio;

    if (OSIntNesting > 0) {                                                   (1)

        return (OS_ERR_POST_ISR);

    } 
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#if OS_ARG_CHK_EN

    if (pevent == (OS_EVENT *)0) {                                            (2)

        return (OS_ERR_PEVENT_NULL);

    }

#endif

    OS_ENTER_CRITICAL();

    pip  = (INT8U)(pevent->OSEventCnt >> 8);                

    prio = (INT8U)(pevent->OSEventCnt & OS_MUTEX_KEEP_LOWER_8);           

#if OS_ARG_CHK_EN                                     

    if (pevent->OSEventType != OS_EVENT_TYPE_MUTEX) {                         (3)

        OS_EXIT_CRITICAL();

        return (OS_ERR_EVENT_TYPE);

    }                                                 

    if (OSTCBCur->OSTCBPrio != pip || 

        OSTCBCur->OSTCBPrio != prio) {                                        (4)

        OS_EXIT_CRITICAL();

        return (OS_ERR_NOT_MUTEX_OWNER);

    }

#endif

    if (OSTCBCur->OSTCBPrio == pip) {                                         (5)

                                                           

                                                                              (6)

        if ((OSRdyTbl[OSTCBCur->OSTCBY] &= ~OSTCBCur->OSTCBBitX) == 0) {

            OSRdyGrp &= ~OSTCBCur->OSTCBBitY;

        }

        OSTCBCur->OSTCBPrio         = prio;

        OSTCBCur->OSTCBY            = prio >> 3;

        OSTCBCur->OSTCBBitY         = OSMapTbl[OSTCBCur->OSTCBY];

        OSTCBCur->OSTCBX            = prio & 0x07;

        OSTCBCur->OSTCBBitX         = OSMapTbl[OSTCBCur->OSTCBX];

        OSRdyGrp                   |= OSTCBCur->OSTCBBitY;

        OSRdyTbl[OSTCBCur->OSTCBY] |= OSTCBCur->OSTCBBitX;

        OSTCBPrioTbl[prio]          = (OS_TCB *)OSTCBCur;

    }    

    OSTCBPrioTbl[pip] = (OS_TCB *)1;                        

    if (pevent->OSEventGrp != 0x00) {                                         (7)

                                                                              (8)

        prio                = OS_EventTaskRdy(pevent, (void *)0, OS_STAT_MUTEX);

        pevent->OSEventCnt &= 0xFF00;                                         (9)

        pevent->OSEventCnt |= prio;

Listing 8.5 Signaling a mutex. (Continued)
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L8.5(1) Mutual exclusion semaphores must only be used by tasks, and thus a check is performed to
make sure that OSMutexPost() is not called from an ISR.

L8.5(2)

L8.5(3) Assuming that the configuration constant OS_ARG_CHK_EN is set to 1, OSMutexPost() checks
that the handle pevent is not a NULL pointer and that  OSMutexCreate() created the ECB
being pointed to.

L8.5(4) OSMutexPost() makes sure that the task that is signaling the mutex actually owns the mutex.
The owner’s priority must either be set to the PIP (OSMutexPend() could have raised the
owner’s priority) or the priority stored in the mutex itself.

L8.5(5) OSMutexPost() then checks to see if the priority of the mutex owner had to be raised to the
PIP because a higher priority task attempted to access the mutex.  In this case, the priority of
the owner is reduced to its original value.  The original task priority is extracted from the
lower 8 bits of .OSEventCnt.

L8.5(6) The calling task is removed from the ready list at the PIP and placed in the ready list at the
task’s original priority.  Note that the TCB fields are recomputed for the original task priority.

L8.5(7) Next, we check to see if any tasks are waiting on the mutex. Tasks are waiting when the
.OSEventGrp field in the ECB contains a nonzero value.

L8.5(8) The highest priority task waiting for the mutex is removed from the wait list by OS_EventTaskRdy()
[see Section 6.05, “Making a Task Ready, OS_EventTaskRdy()”], and this task is ready to run.

L8.5(9) The priority of the new owner is saved in the mutex’s ECB.

L8.5(10) OS_Sched() is then called to see if the task made ready is now the highest priority task
ready to run.  If it is, a context switch results, and the readied task is resumed. If the read-
ied task is not the highest priority task, then OS_Sched() returns, and the task that called
OSMutexPost() will continue execution.

L8.5(11) If no tasks are waiting on the mutex, the lower 8 bits of .OSEventCnt are set to 0xFF, which
indicates that the mutex is immediately available.

        pevent->OSEventPtr  = OSTCBPrioTbl[prio];          

        OS_EXIT_CRITICAL();

        OS_Sched();                                                          (10)

        return (OS_NO_ERR);

    } 

    pevent->OSEventCnt |= 0x00FF;                                            (11)

    pevent->OSEventPtr  = (void *)0;

    OS_EXIT_CRITICAL();

    return (OS_NO_ERR);

}

Listing 8.5 Signaling a mutex. (Continued)
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8.04 Getting a Mutex without Waiting (Non-blocking), 
OSMutexAccept()

It is possible to obtain a mutex without putting a task to sleep if the mutex is not available.  This action
is accomplished by calling OSMutexAccept(), and the code for this function is shown in Listing 8.6. 

Listing 8.6 Getting a mutex without waiting. 
INT8U OSMutexAccept (OS_EVENT *pevent, INT8U *err)

{

#if OS_CRITICAL_METHOD == 3                                 

    OS_CPU_SR  cpu_sr;

#endif    

    

    

    if (OSIntNesting > 0) {                                                   (1)

        *err = OS_ERR_PEND_ISR;

        return (0);

    }

#if OS_ARG_CHK_EN

    if (pevent == (OS_EVENT *)0) {                          

        *err = OS_ERR_PEVENT_NULL;

        return (0);

    }

#endif

    OS_ENTER_CRITICAL();

#if OS_ARG_CHK_EN

    if (pevent->OSEventType != OS_EVENT_TYPE_MUTEX) {       

        OS_EXIT_CRITICAL();

        *err = OS_ERR_EVENT_TYPE;

        return (0);

    }

#endif

    OS_ENTER_CRITICAL();

                                                                              (2)
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L8.6(1) As with the other calls, if OS_ARG_CHK_EN is set to 1 in OS_CFG.H, OSMutexAccept() starts
by ensuring that it’s not called from an ISR and performs boundary checks.  

L8.6(2) OSMutexAccept() then checks to see if the mutex is available (the lower 8 bits of .OSEventCnt
are set to 0xFF).

L8.6(3)

L8.6(4) If the mutex is available, OSMutexAccept() acquires the mutex by writing the priority of the
mutex owner in the lower 8 bits of .OSEventCnt and by linking the owner’s TCB.

The code that called OSMutexAccept() needs to examine the returned value.  A returned value of 0
indicates that the mutex is not available. A return value of 1 indicates that the mutex is available, and the
caller can access the resource.

8.05 Obtaining the Status of a Mutex, 
OSMutexQuery()

OSMutexQuery() allows your application to take a snapshot of an ECB that is used as a mutex.  The
code for this function is shown in Listing 8.7. 

    if ((pevent->OSEventCnt & OS_MUTEX_KEEP_LOWER_8) == OS_MUTEX_AVAILABLE) {     

        pevent->OSEventCnt &= OS_MUTEX_KEEP_UPPER_8;                          (3)

        pevent->OSEventCnt |= OSTCBCur->OSTCBPrio;         

        pevent->OSEventPtr  = (void *)OSTCBCur;                               (4)

        OS_EXIT_CRITICAL();

        *err = OS_NO_ERR;

        return (1);

    }

    OS_EXIT_CRITICAL();

    *err = OS_NO_ERR;

    return (0);

}

Listing 8.7 Obtaining the status of a mutex. 
INT8U OSMutexQuery (OS_EVENT *pevent, OS_MUTEX_DATA *pdata)

{

#if OS_CRITICAL_METHOD == 3

    OS_CPU_SR  cpu_sr;

#endif    

    INT8U     *psrc;

    INT8U     *pdest;

Listing 8.6 Getting a mutex without waiting. (Continued)
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    if (OSIntNesting > 0) {                                                   (1)

        return (OS_ERR_QUERY_ISR);

    }

#if OS_ARG_CHK_EN

    if (pevent == (OS_EVENT *)0) {                                            (2)

        return (OS_ERR_PEVENT_NULL);

    }

#endif

    OS_ENTER_CRITICAL();

#if OS_ARG_CHK_EN

    if (pevent->OSEventType != OS_EVENT_TYPE_MUTEX) {                         (3)

        OS_EXIT_CRITICAL();

        return (OS_ERR_EVENT_TYPE);

    }

#endif

    pdata->OSMutexPIP  = (INT8U)(pevent->OSEventCnt >> 8);                    (4)

    pdata->OSOwnerPrio = (INT8U)(pevent->OSEventCnt & 0x00FF);

    if (pdata->OSOwnerPrio == 0xFF) {

        pdata->OSValue = 1;                                                   (5)

    } else {

        pdata->OSValue = 0;                                                   (6)

    }

    pdata->OSEventGrp  = pevent->OSEventGrp;                                  (7)

    psrc               = &pevent->OSEventTbl[0];

    pdest              = &pdata->OSEventTbl[0];

#if OS_EVENT_TBL_SIZE > 0

    *pdest++           = *psrc++;   

#endif    

#if OS_EVENT_TBL_SIZE > 1

    *pdest++           = *psrc++;   

#endif    

#if OS_EVENT_TBL_SIZE > 2

    *pdest++           = *psrc++;   

#endif    

#if OS_EVENT_TBL_SIZE > 3

    *pdest++           = *psrc++;   

#endif    

Listing 8.7 Obtaining the status of a mutex. (Continued)
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OSMutexQuery() recieves two arguments: pevent contains a pointer to the mutex, which
OSMutexCreate() returns when the mutex is created, and pdata, which is a pointer to a data
structure (OS_MUTEX_DATA, see uCOS_II.H) that holds information about the mutex. Your application
thus needs to allocate a variable of type OS_MUTEX_DATA that is used to receive the information
about the desired mutex. I decided to use a new data structure because the caller should only be
concerned with mutex-specific data, as opposed to the more generic OS_EVENT data structure.
OS_MUTEX_DATA contains the mutex PIP (.OSMutexPIP),  the priority of the task owning the
mutex (.OSMutexPrio), and the value of the mutex (.OSMutexValue), which is set to 1 when the
mutex is available and 0 if it’s not. Note that .OSMutexPrio contains 0xFF if no task owns the
mutex. Finally, OS_MUTEX_DATA contains the list of tasks waiting on the mutex (.OSEventTbl[] and
.OSEventGrp).

L8.7(1) As with all mutex calls, OSMutexQuery() determines whether the call is made from an ISR.

L8.7(2)

L8.7(3) If the configuration constant OS_ARG_CHK_EN is set to 1, OSMutexQuery() checks that the
handle pevent is not a NULL pointer and that OSMutexCreate() has created the ECB being
pointed to.

L8.7(4) OSMutexQuery() then loads the OS_MUTEX_DATA structure with the appropriate fields. We
extract the PIP from the upper 8 bits of the .OSEventCnt field of the mutex.

L8.7(5) Next, we obtain the mutex value from the lower 8 bits of the .OSEventCnt field of the mutex.
If the mutex is available (i.e., lower 8 bits set to 0xFF), then the mutex value is assumed to be 1.

#if OS_EVENT_TBL_SIZE > 4

    *pdest++           = *psrc++;   

#endif    

#if OS_EVENT_TBL_SIZE > 5

    *pdest++           = *psrc++;   

#endif    

#if OS_EVENT_TBL_SIZE > 6

    *pdest++           = *psrc++;   

#endif    

#if OS_EVENT_TBL_SIZE > 7

    *pdest             = *psrc;

#endif    

    OS_EXIT_CRITICAL();

    return (OS_NO_ERR);

}

Listing 8.7 Obtaining the status of a mutex. (Continued)
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L8.7(6) Otherwise, the mutex value is 0 (i.e., unavailable because it’s owned by a task).

L8.7(7) Finally, the mutex wait list is copied into the appropriate fields in OS_MUTEX_DATA.  For per-
formance reasons, I decided to use inline code instead of using a for loop.
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Chapter 9

Event Flag Management
µC/OS-II event flags consist of two elements: a series of bits (either 8, 16, or 32) used to hold the current
state of the events in the group and a list of tasks waiting for a combination of these bits to be either set
(1) or cleared (0). µC/OS-II provides six services to access semaphores: OSFlagAccept(),
OSFlagCreate(), OSFlagDel(), OSFlagPend(), OSFlagPost(), and OSFlagQuery().

To enable µC/OS-II event-flag services, you must set the configuration constants in OS_CFG.H.  Spe-
cifically, Table 9.1 shows which services are compiled, based on the value of configuration constants
found in OS_CFG.H.  You should note that none of the event flag services are enabled when OS_FLAG_EN
is set to 0.  To enable the feature (i.e., service), simply set the configuration constant to 1.  You should
notice that OSFlagCreate(), OSFlagPend(), and OSFlagPost() cannot be individually disabled like
the other services because they are always needed when you enable µC/OS-II event flag management.

Figure 9.1 shows a flow diagram to illustrate the relationship between tasks, ISRs, and event flags.
Note that the symbology used to represent an event flag group is a series of 8 bits even though the event
flag group can contain 8, 16, or 32 bits (see OS_FLAGS in OS_CFG.H).  The hourglass represents a timeout
that can be specified with the OSFlagPend() call.  

As you can see from Figure 9.1, a task or an ISR can call OSFlagAccept(), OSFlagPost(), or
OSFlagQuery(). However, only tasks are allowed to call OSFlagCreate(), OSFlagDel(), or
OSFlagPend().

Table 9.1 Event flag configuration constants in OS_CFG.H.

µC/OS-II Event Flag Service Enabled when set to 1 in OS_CFG.H
OSFlagAccept() OS_FLAG_ACCEPT_EN

OSFlagCreate()

OSFlagDel() OS_FLAG_DEL_EN

OSFlagPend()

OSFlagPost()

OSFlagQuery() OS_FLAG_QUERY_EN
 199
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Figure 9.1 µC/OS-II event flag services.

9.00 Event Flag Internals
A µC/OS-II's event flag group consist of three elements, as shown in the OS_FLAG_GRP structure (Listing
9.1).

L9.1(1) .OSFlagType is a variable, which is used to make sure that you are pointing to an event flag
group.  This field is the first field of the structure because it allows µC/OS-II services to vali-
date the type of structure to which you are pointing.  For example, if you were to pass a
pointer to an event flag group to OSSemPend(), µC/OS-II would return an error code indicat-
ing that you are not passing the proper object to the semaphore pend call.  You should note
that an event control block (ECB) also has its first byte containing the type of OS object (i.e.,
semaphore, mutex, message mailbox, or message queue).

L9.1(2) .OSFlagWaitList contains a list of tasks waiting for events.

L9.1(3) .OSFlagFlags is a series of flags (i.e., bits) that holds the current status of events. The num-
ber of bits used is decided at compile time and can either be 8, 16, or 32, depending on the
data type you assign to OS_FLAGS in OS_CFG.H.

You should note that the wait list for event flags is different than the other wait lists in µC/OS-II.
With event flags, the wait list is accomplished through a doubly linked list, as shown in Figure 9.2.
Three data structures are involved.  OS_FLAG_GRP (mentioned above), OS_TCB, which is the task control
block, and OS_FLAG_NODE, which is used to keep track of the bits for which the task is waiting and the
type of wait (AND or OR).  As you can see, a lot of pointers are involved.

Listing 9.1 Event flag group data structure.
typedef struct {

    INT8U     OSFlagType;                                                     (1)

    void     *OSFlagWaitList;                                                 (2)

    OS_FLAGS  OSFlagFlags;                                                    (3)

} OS_FLAG_GRP;

OSFlagAccept()
OSFlagPend()
OSFlagQuery()TaskTask

ISR

Task

ISROSFlagAccept()
OSFlagQuery()

OSFlagCreate()
OSFlagDel()
OSFlagPost()

OSFlagPost()

Event Flag Group
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Figure 9.2 Relationship between event flag group, event flag nodes, 
and TCBs.

An OS_FLAG_NODE is created when a task desires to wait on bits of an event flag group, and the node
is destroyed when the event(s) occur.  In other words, a node is created by OSFlagPend() as we see
shortly.  Before we discuss this, let’s look at the OS_FLAG_NODE data structure.

L9.2(1) The .OSFlagNodeNext and .OSFlagNodePrev are used to maintain a doubly linked list of
OS_FLAG_NODEs. The doubly linked list allows us to easily insert and especially remove nodes
from the wait list.

L9.2(2) .OSFlagNodeTCB is used to point to the TCB of the task waiting on flags belonging to the
event flag group.  In other words, this pointer allows us to know which task is waiting for the
specified flags.

Listing 9.2 Event flag group node data structure.
typedef struct {

    void     *OSFlagNodeNext;                                                 (1)

    void     *OSFlagNodePrev;           

    void     *OSFlagNodeTCB;                                                  (2)

    void     *OSFlagNodeFlagGrp;                                              (3)

    OS_FLAGS  OSFlagNodeFlags;                                                (4)

    INT8U     OSFlagNodeWaitType;                                             (5)

} OS_FLAG_NODE;

AND or OR

0
0

OS_FLAG_GRP OS_FLAG_NODE

OS_TCB

OS_EVENT_TYPE_FLAG AND or OR AND or OR

.OSTCBFlagNode

.OSFlagNodePrev

.OSFlagNodeNext

.OSFlagNodeTCB

.OSFlagNodeFlags

.OSFlagNodeWaitType

.OSFlagWaitList

.OSFlagFlags

.OSFlagType

.OSTCBFlagNode
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L9.2(3) .OSFlagNodeFlagGrp allows a link back to the event flag group.  This pointer is used when
removing the node from the doubly linked list and is needed by OSTaskDel() when the
pended task needs to be deleted.

L9.2(4) The .OSFlagNodeFlags contains the bit-pattern of the flags for which the task is waiting.
For example, your task might have performed an OSFlagPend() and specified that the task
wants to wait for bits 0, 4, 6, and 7 (bit 0 is the rightmost bit). In this case,
.OSFlagNodeFlags contains 0xD1. Depending on the size of the data type, OS_FLAGS,
.OSFlagNodeFlags is either 8, 16, or 32 bits.  OS_FLAGS is specified in your application con-
figuration file, i.e., OS_CFG.H.  Because µC/OS-II and the ports are provided in source form,
you can easily change the number of bits in an event flag group to satisfy your requirements
for a specific application or product.  The reason you would limit the number of bits to 8 is to
reduce both RAM and ROM for your application. However, for maximum portability of your
applications, you should set OS_FLAGS to an INT32U data type.

L9.2(5) The last member of the OS_FLAG_NODE data structure is OSFlagNodeWaitType, which deter-
mines whether the task is waiting for ALL (AND wait) the bits in the event flag group that
match OSFlagNodeFlags or ANY (OR wait) of the bits in the event flag group that match
OSFlagNodeFlags.  OSFlagNodeWaitType can be set to

You should note that AND and ALL mean the same thing, and either one can be used.  I pre-
fer to use OS_FLAG_WAIT_???_ALL because it’s more obvious, but you are certainly welcome
to use OS_FLAG_WAIT_???_AND. Similarly, OR or ANY means the same thing, and either one
can be used.  Again, I prefer to use OS_FLAG_WAIT_???_ANY because it’s more obvious, but,
again, you can use OS_FLAG_WAIT_???_OR.  The other thing to notice is that you can wait for
either bits to be set or cleared. 

OS_FLAG_WAIT_CLR_ALL

OS_FLAG_WAIT_CLR_AND

OS_FLAG_WAIT_CLR_ANY

OS_FLAG_WAIT_CLR_OR

OS_FLAG_WAIT_SET_ALL

OS_FLAG_WAIT_SET_AND

OS_FLAG_WAIT_SET_ANY

OS_FLAG_WAIT_SET_OR
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9.01 Creating an Event Flag Group, 
OSFlagCreate()

The code to create an event flag group is shown in Listing 9.3.

L9.3(1) OSFlagCreate() starts by making sure it’s not called from an ISR because that’s not
allowed.

L9.3(2) OSFlagCreate() then attempts to get a free event flag group (i.e., an OS_FLAG_GRP) from the
free list.

L9.3(3) An non-NULL pointer indicates that an event flag group is available.

Listing 9.3 Creating an event flag group.
OS_FLAG_GRP  *OSFlagCreate (OS_FLAGS flags, INT8U *err)

{

#if OS_CRITICAL_METHOD == 3  

    OS_CPU_SR    cpu_sr;

#endif    

    OS_FLAG_GRP *pgrp;

    if (OSIntNesting > 0) {                                                   (1)

        *err = OS_ERR_CREATE_ISR; 

        return ((OS_FLAG_GRP *)0); 

    }

    OS_ENTER_CRITICAL();

    pgrp = OSFlagFreeList;                                                    (2)

    if (pgrp != (OS_FLAG_GRP *)0) {                                           (3)

                                                                              (4)

        OSFlagFreeList       = (OS_FLAG_GRP *)OSFlagFreeList->OSFlagWaitList;

        pgrp->OSFlagType     = OS_EVENT_TYPE_FLAG;                            (5)

        pgrp->OSFlagFlags    = flags;                                         (6)

        pgrp->OSFlagWaitList = (void *)0;                                     (7)

        OS_EXIT_CRITICAL();

        *err                 = OS_NO_ERR;

    } else {

        OS_EXIT_CRITICAL();

        *err                 = OS_FLAG_GRP_DEPLETED;

    }

    return (pgrp);                                                            (8)

}
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L9.3(4) After a group is allocated, the free list pointer is adjusted.  Note that the number of event flag
groups that you can create is determined by the #define constant OS_MAX_FLAGS, which is
defined in OS_CFG.H in your application.

L9.3(5) OSFlagCreate() then fills in the fields in the event flag group. OS_EVENT_TYPE_FLAG indi-
cates that this control block is an event flag group.  Because this field is first in the data struc-
ture, it’s at offset zero.  In µC/OS-II, the first byte of an event flag group or an event control
block used for semaphores, mailboxes, queues, and mutexes indicates the type of kernel
object.  This process allows us to check that we are pointing to the proper object.

L9.3(6) OSFlagCreate() then stores the initial value of the event flags into the event flag group.
Typically, you initialize the flags to all 0s, but, if you are checking for cleared bits then, you
could initialize the flags to all 1s.

L9.3(7) Because we are creating the group, no tasks are waiting on the group, and thus the wait list
pointer is initialized to NULL.

L9.3(8) The pointer to the created event flag group is returned. If no more groups are available,
OSFlagCreate() returns a NULL pointer.

Figure 9.3 Event flag group just before OSFlagCreate() returns.

9.02 Deleting an Event Flag Group, OSFlagDel()
The code to delete an event flag group is shown in Listing 9.4.

Listing 9.4 Deleting an event flag group. 
OS_FLAG_GRP  *OSFlagDel (OS_FLAG_GRP *pgrp, INT8U opt, INT8U *err)

{

#if OS_CRITICAL_METHOD == 3                                

    OS_CPU_SR     cpu_sr;

#endif    

    BOOLEAN       tasks_waiting;

    OS_FLAG_NODE *pnode;

OS_FLAG_GRP

OS_EVENT_TYPE_FLAG

.OSFlagWaitList

.OSFlagFlags

.OSFlagType

0

Value of 'flags' argument
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    if (OSIntNesting > 0) {                                                   (1)

        *err = OS_ERR_DEL_ISR;                             

        return (pgrp);

    }

#if OS_ARG_CHK_EN > 0

    if (pgrp == (OS_FLAG_GRP *)0) {                                           (2)

        *err = OS_FLAG_INVALID_PGRP;

        return (pgrp);

    }

    if (pgrp->OSFlagType != OS_EVENT_TYPE_FLAG) {                             (3)

        *err = OS_ERR_EVENT_TYPE;

        return (pgrp);

    }

#endif

    OS_ENTER_CRITICAL();

    if (pgrp->OSFlagWaitList != (void *)0) {                                  (4)

        tasks_waiting = TRUE; 

    } else {

        tasks_waiting = FALSE; 

    }

    switch (opt) {

        case OS_DEL_NO_PEND:                                                  (5)

             if (tasks_waiting == FALSE) {

                 pgrp->OSFlagType     = OS_EVENT_TYPE_UNUSED;

                 pgrp->OSFlagWaitList = (void *)OSFlagFreeList;               (6)

                 OSFlagFreeList       = pgrp;

                 OS_EXIT_CRITICAL();

                 *err                 = OS_NO_ERR;

                 return ((OS_FLAG_GRP *)0);                                   (7)

             } else {

                 OS_EXIT_CRITICAL();

                 *err                 = OS_ERR_TASK_WAITING;

                 return (pgrp);

             }

Listing 9.4 Deleting an event flag group. (Continued)
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You should use this function with caution because multiple tasks could attempt to access a deleted
event flag group.  Generally speaking, before you delete an event flag group, you first delete all the tasks
that access the event flag group.

L9.4(1) OSFlagDel() starts by making sure that this function is not called from an ISR because that’s
not allowed.  

L9.4(2)

L9.4(3) We then validate the arguments passed to OSFlagDel().  First, we make sure that pgrp is not
a NULL pointer and that pgrp points to an event flag group.  Note that this code is condition-
ally compiled, and thus, if OS_ARG_CHK_EN is set to 0, then this code is not compiled.  This
process is done to allow you to reduce the amount of code space needed by this module.

L9.4(4) OSFlagDel() then determines whether any tasks are waiting on the event flag group and sets
the local boolean variable tasks_waiting accordingly.

Based on the option (i.e., opt) passed in the call, OSFlagDel() either deletes the event
flag group only if no tasks are pending on the event flag group (opt == OS_DEL_NO_PEND) or
deletes the event flag group even if tasks are waiting (opt == OS_DEL_ALWAYS).

        case OS_DEL_ALWAYS:                                                   (8)

             pnode = pgrp->OSFlagWaitList;

             while (pnode != (OS_FLAG_NODE *)0) {                             (9)

                 OS_FlagTaskRdy(pnode, (OS_FLAGS)0);

                 pnode = pnode->OSFlagNodeNext;

             }

             pgrp->OSFlagType     = OS_EVENT_TYPE_UNUSED;

             pgrp->OSFlagWaitList = (void *)OSFlagFreeList;                  (10)

             OSFlagFreeList       = pgrp;

             OS_EXIT_CRITICAL();

             if (tasks_waiting == TRUE) {                                    (11)

                 OS_Sched(); 

             }

             *err = OS_NO_ERR;

             return ((OS_FLAG_GRP *)0);                                      (12)

        default:

             OS_EXIT_CRITICAL();

             *err = OS_ERR_INVALID_OPT;

             return (pgrp);

    }

}

Listing 9.4 Deleting an event flag group. (Continued)
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L9.4(5)

L9.4(6) When opt is set to OS_DEL_NO_PEND and no task is waiting on the event flag group,
OSFlagDel() marks the group as unused, and the event flag group is returned to the free list
of groups. This process allows another event flag group to be created by reusing this event
flag group.

L9.4(7) You should note that OSFlagDel() returns a NULL pointer because, at this point, the event
flag group should no longer be accessed through the original pointer.

L9.4(8)

L9.4(9) When opt is set to OS_DEL_ALWAYS, all tasks waiting on the event flag group are readied.  Each
task thinks the event(s) that the task was waiting for occurred. We discuss OS_FlagTaskRdy()
when we look at the code for OSFlagPost().

L9.4(10) After all pending tasks are readied, OSFlagDel() marks the event flag group as unused, and
the group is returned to the free list of groups.

L9.4(11) The scheduler is called only if tasks were waiting on the event flag group.

L9.4(12) You should note that OSFlagDel() returns a NULL pointer because, at this point, the event
flag group should no longer be accessed through the original pointer.

9.03 Waiting for Event(s) of an Event Flag Group, 
OSFlagPend()

The code to wait for event(s) of an event flag group is shown in Listing 9.5.   

Listing 9.5 Waiting for event(s) of an event flag group. 
OS_FLAGS  OSFlagPend (OS_FLAG_GRP *pgrp, OS_FLAGS flags, INT8U wait_type, INT16U timeout, INT8U *err)

{

#if OS_CRITICAL_METHOD == 3 

    OS_CPU_SR     cpu_sr;

#endif    

    OS_FLAG_NODE  node;

    OS_FLAGS      flags_cur;

    OS_FLAGS      flags_rdy;

    BOOLEAN       consume;

    if (OSIntNesting > 0) {                                                                   (1)

        *err = OS_ERR_PEND_ISR; 

        return ((OS_FLAGS)0);

    }

#if OS_ARG_CHK_EN > 0

    if (pgrp == (OS_FLAG_GRP *)0) {                                                           (2)

        *err = OS_FLAG_INVALID_PGRP;

        return ((OS_FLAGS)0);

    }
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    if (pgrp->OSFlagType != OS_EVENT_TYPE_FLAG) {                                             (3)

        *err = OS_ERR_EVENT_TYPE;

        return ((OS_FLAGS)0);

    }

#endif

    if (wait_type & OS_FLAG_CONSUME) {                                                        (4)

        wait_type &= ~OS_FLAG_CONSUME;

        consume    = TRUE;

    } else {

        consume    = FALSE;

    }

    OS_ENTER_CRITICAL();

    switch (wait_type) {                                                                      (5)

        case OS_FLAG_WAIT_SET_ALL: 

             flags_rdy = pgrp->OSFlagFlags & flags;                                           (6)

             if (flags_rdy == flags) {                                                        (7)

                 if (consume == TRUE) {                                                       (8)

                     pgrp->OSFlagFlags &= ~flags_rdy;                                         (9)

                 }

                 flags_cur = pgrp->OSFlagFlags;                                              (10)

                 OS_EXIT_CRITICAL(); 

                 *err      = OS_NO_ERR;

                 return (flags_cur);                                                         (11)

             } else {                                                                        (12)

                 OS_FlagBlock(pgrp, &node, flags, wait_type, timeout); 

                 OS_EXIT_CRITICAL();

             }

             break;

        case OS_FLAG_WAIT_SET_ANY:

             flags_rdy = pgrp->OSFlagFlags & flags;                                          (13)

             if (flags_rdy != (OS_FLAGS)0) {                                                 (14)

                 if (consume == TRUE) {                                                      (15)

                     pgrp->OSFlagFlags &= ~flags_rdy;                                        (16)

                 }

                 flags_cur = pgrp->OSFlagFlags;                                              (17)

                 OS_EXIT_CRITICAL(); 

                 *err      = OS_NO_ERR;

                 return (flags_cur);                                                         (18)

             } else {                                                                        (19)

                 OS_FlagBlock(pgrp, &node, flags, wait_type, timeout); 

                 OS_EXIT_CRITICAL();

             }

             break;

Listing 9.5 Waiting for event(s) of an event flag group. (Continued)
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#if OS_FLAG_WAIT_CLR_EN > 0

        case OS_FLAG_WAIT_CLR_ALL: 

             flags_rdy = ~pgrp->OSFlagFlags & flags;   

             if (flags_rdy == flags) {   

                 if (consume == TRUE) {  

                     pgrp->OSFlagFlags |= flags_rdy; 

                 }

                 flags_cur = pgrp->OSFlagFlags;            

                 OS_EXIT_CRITICAL();                       

                 *err      = OS_NO_ERR;

                 return (flags_cur);

             } else {                                      

                 OS_FlagBlock(pgrp, &node, flags, wait_type, timeout); 

                 OS_EXIT_CRITICAL();

             }

             break;

        case OS_FLAG_WAIT_CLR_ANY:

             flags_rdy = ~pgrp->OSFlagFlags & flags;  

             if (flags_rdy != (OS_FLAGS)0) {   

                 if (consume == TRUE) {  

                     pgrp->OSFlagFlags |= flags_rdy;   

                 }

                 flags_cur = pgrp->OSFlagFlags;   

                 OS_EXIT_CRITICAL();   

                 *err      = OS_NO_ERR;

                 return (flags_cur);

             } else { 

                 OS_FlagBlock(pgrp, &node, flags, wait_type, timeout); 

                 OS_EXIT_CRITICAL();

             }

             break;

#endif

        default:

             OS_EXIT_CRITICAL();

             flags_cur = (OS_FLAGS)0;

             *err      = OS_FLAG_ERR_WAIT_TYPE;

             return (flags_cur);

    }

    OS_Sched();                                                                              (20)

    OS_ENTER_CRITICAL();

    if (OSTCBCur->OSTCBStat & OS_STAT_FLAG) {                                                (21)

Listing 9.5 Waiting for event(s) of an event flag group. (Continued)
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L9.5(1) As with all µC/OS-II PEND calls, OSFlagPend() cannot be called from an ISR, and thus
OSFlagPend() checks for this condition first.

L9.5(2)

L9.5(3) Assuming that the configuration constant OS_ARG_CHK_EN is set to 1, OSFlagPend() makes
sure that the handle pgrp is not a NULL pointer and that pgrp points to an event flag group that
should have been created by OSFlagCreate().

OSFlagPend() allows you to specify whether you SET or CLEAR flags after they satisfy the
condition for which you are waiting. This process is accomplished by ADDing (or ORing)
OS_FLAG_CONSUME to the wait_type argument during the call to OSFlagPend(). For exam-
ple, if you want to wait for BIT0 to be SET in the event flag group and if BIT0 is in fact SET, it
is cleared by OSFlagPend() if you add OS_FLAG_CONSUME to the type of wait desired, as
shown below

        OS_FlagUnlink(&node);                                                                (22)

        OSTCBCur->OSTCBStat = OS_STAT_RDY; 

        OS_EXIT_CRITICAL();

        flags_cur           = (OS_FLAGS)0;

        *err                = OS_TIMEOUT;  

    } else {

        if (consume == TRUE) {                                                                (23)

            switch (wait_type) {

                case OS_FLAG_WAIT_SET_ALL:

                case OS_FLAG_WAIT_SET_ANY:                                                   (24)

                     pgrp->OSFlagFlags &= ~OSTCBCur->OSTCBFlagsRdy;

                     break;

                     

                case OS_FLAG_WAIT_CLR_ALL:

                case OS_FLAG_WAIT_CLR_ANY:  

                     pgrp->OSFlagFlags |= OSTCBCur->OSTCBFlagsRdy;

                     break;

            }

        }

        flags_cur = pgrp->OSFlagFlags;                                                        (25)

        OS_EXIT_CRITICAL();

        *err      = OS_NO_ERR;   

    }

    return (flags_cur);

}

OSFlagPend(OSFlagMyGrp, 

          (OS_FLAGS)0x01, 

          FLAG_WAIT_SET_ANY + OS_FLAG_CONSUME,

          0,

          &err);

Listing 9.5 Waiting for event(s) of an event flag group. (Continued)
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L9.5(4) Because the consumption of the flag(s) is done later in the code, OSFlagPend() saves the
consume option in the boolean variable called consume.

L9.5(5) OSFlagPend() then executes code, based on the wait type specified in the function called.
There are four choices:

1. wait for all bits specified to be set in the event flag group, 

2. wait for any bit specified to be set in the event flag group,

3. wait for all bits specified to be cleared in the event flag group,

4. wait for any bit specified to be cleared in the event flag group.

The last two choices are identical to the first two choices except that OSFlagPend() looks
for the bits specified to be cleared (i.e., 0) instead of being set (i.e., 1). For this reason, I only
discuss the first two choices.  In fact, in order to conserve ROM, you might not need to look
for bits to be cleared, and thus you can compile out all the corresponding code out by setting
OS_FLAG_WAIT_CLR_EN to 0 in OS_CFG.H.

Wait for all of the specified bits to be set:

L9.5(6) When wait_type is set to either OS_FLAG_WAIT_SET_ALL or OS_FLAG_WAIT_SET_AND,
OSFlagPend() extracts the desired bits (which are specified in the flags argument) from the
event flag group.

L9.5(7) If all the bits extracted match the bits that you specified in the flags argument, then the event
flags that the task wants are all set. Thus, the PEND call returns to the caller.

L9.5(8)

L9.5(9) Before we return, we need to determine whether we need to consume the flags, and if so, we
clear all the flags that satisfy the condition.

L9.5(10)

L9.5(11) The new value of the event flag group is obtained and returned to the caller.

L9.5(12) If all the desired bits in the event flag group were not set, then the calling task blocks (i.e.,
suspends) until all the bits are either set or a timeout occurs.  Instead of repeating code for all
four types of wait, I created a function [OS_FlagBlock()] to handle the details of blocking
the calling task (described later).

Wait for any of the specified bits to be set:

L9.5(13) When wait_type is set to either OS_FLAG_WAIT_SET_ANY or OS_FLAG_WAIT_SET_OR,
OSFlagPend() extracts the desired bits (which are specified in the flags argument), from the
event flag group.

L9.5(14) If any of the bits extracted match the bits that you specified in the flags argument, then the
PEND call returns to the caller.

L9.5(15)

L9.5(16) Before we return, we need to determine whether we need to consume the flag(s), and if so,
we need to clear all the flag(s) that satisfied the condition.

L9.5(17)

L9.5(18) The new value of the event flag group is obtained and returned to the caller.

L9.5(19) If none of the desired bits in the event flag group were not set, then the calling task will
blocks (i.e., suspends) until any of the bits is either set or a timeout occurs.
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As mentioned previously, if the desired bits and conditions of a PEND call are not satisfied the calling
task is suspended until either the event or a timeout occurs. The task is suspended by OS_FlagBlock()
(see Listing 9.6), which adds the calling task to the wait list of the event flag group. The process is
shown in Figure 9.4. 

L9.6(1)

F9.4(1) OS_FlagBlock() starts by setting the appropriate fields in the task control block. You
should note that an OS_FLAG_NODE is allocated on the stack of the calling task (see
OSFlagPend(), Listing 9.5). This allocation means that we don’t need to keep a separate
free list of OS_FLAG_NODE because these data structures can simply be allocated on the stack
of the calling task. That being said, the calling task must have sufficient stack space to allo-
cate this structure on its stack.

Listing 9.6 Adding a task to the event flag group wait list.
static void OS_FlagBlock (OS_FLAG_GRP  *pgrp, 

                          OS_FLAG_NODE *pnode, 

                          OS_FLAGS      flags,

                          INT8U         wait_type, 

                          INT16U        timeout)

{

    OS_FLAG_NODE  *pnode_next;

    OSTCBCur->OSTCBStat      |= OS_STAT_FLAG;                                                 (1)

    OSTCBCur->OSTCBDly        = timeout;   

#if OS_TASK_DEL_EN > 0

    OSTCBCur->OSTCBFlagNode   = pnode;                                                        (2)

#endif

    pnode->OSFlagNodeFlags    = flags;                                                         (3)

    pnode->OSFlagNodeWaitType = wait_type; 

    pnode->OSFlagNodeTCB      = (void *)OSTCBCur;                                              (4)

    pnode->OSFlagNodeNext     = pgrp->OSFlagWaitList;                                         (5)

    pnode->OSFlagNodePrev     = (void *)0;                                                    (6)

    pnode->OSFlagNodeFlagGrp  = (void *)pgrp;                                                 (7)

    pnode_next                = pgrp->OSFlagWaitList; 

    if (pnode_next != (void *)0) {   

        pnode_next->OSFlagNodePrev = pnode;                                                    (8)

    } 

    pgrp->OSFlagWaitList = (void *)pnode;                                                     (9)

                                                                                             (10)

    if ((OSRdyTbl[OSTCBCur->OSTCBY] &= ~OSTCBCur->OSTCBBitX) == 0) {

        OSRdyGrp &= ~OSTCBCur->OSTCBBitY;

    }

}
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L9.6(2)

F9.4(2) We then link the OS_FLAG_NODE to the TCB but only if OS_TASK_DEL_EN is set to 1. This link
allows OSTaskDel() to remove the task being suspended from the wait list, should another
task decide to delete this task.

L9.6(3)

F9.4(3) Next, OS_FlagBlock() saves the flags for which the task is waiting, as well as the wait type
in the OS_FLAG_NODE structure.

Figure 9.4 Adding the current task to the wait list of the event flag 
group.   

L9.6(4)

F9.4(4) We then link the TCB to the OS_FLAG_NODE.

L9.6(5)

F9.4(5) The OS_FLAG_NODE is then linked to the other OS_FLAG_NODEs in the wait list.
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L9.6(6)

F9.4(6) You should note that the OS_FLAG_NODE is simply inserted at the beginning of the doubly
linked list for simplicity’s sake.

L9.6(7)

F9.4(7) We then link the event flag group to the OS_FLAG_NODE.  This linkage is again done to allow
us to delete the task that is being added to the wait list of the event flag group.

L9.6(8)

F9.4(8) OS_FlagBlock() then links the previous first node in the wait list to the new OS_FLAG_NODE.

L9.6(9)

F9.4(9)

L9.6(10) Finally, the pointer of the beginning of the wait list is updated to point to the new OS_FLAG_NODE,
and the calling task is made not ready to run.

You should note that interrupts are disabled during the process of blocking the calling task. 

L9.5(20) When OS_FlagBlock() returns, the scheduler is called because, of course, the calling task is
no longer able to run because the event(s) for which it was looking did not occur.

L9.5(21) When µC/OS-II resumes the calling task, OSFlagPend() checks how the task was readied.  If
the status field in the TCB still indicates that the task is still waiting for event flags to be
either set or cleared, then the task must have been readied because of a timeout.

L9.5(22) In this case, the OS_FLAG_NODE is removed from the wait list by calling OS_FlagUnlink(),
and an error code is returned to the caller indicating the outcome of the call.  The code for
OS_FlagUnlink() is not shown but should be quite obvious because we are simply removing
a node from a doubly linked list.  The code provided on the CD-ROM contains comments so
you can easily follow what’s going on.

L9.5(23)

L9.5(24) If the calling task is not resumed because of a timeout, then it must have been resumed
because the event flags for which it was waiting have been either set or cleared.  In this case,
we determine whether the calling task wanted to consume the event flags.  If this is the case,
the appropriate flags are either set or cleared based on the wait type.

L9.5(25) Finally, OSFlagPend() obtains the current value of the event flags in the group in order to
return this information to the caller.
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9.04 Setting or Clearing Event(s) in an Event Flag 
Group, OSFlagPost()

The code for either setting or clearing bits in an event flag group is done by calling OSFlagPost(), and
the code for this function is shown in Listing 9.7.

Listing 9.7 Setting or clearing bits (i.e., events) in an event flag 
group. 

OS_FLAGS  OSFlagPost (OS_FLAG_GRP *pgrp, OS_FLAGS flags, INT8U opt, INT8U *err)

{

#if OS_CRITICAL_METHOD == 3                          

    OS_CPU_SR     cpu_sr;

#endif    

    OS_FLAG_NODE *pnode;

    BOOLEAN       sched;

    OS_FLAGS      flags_cur;

    OS_FLAGS      flags_rdy;

#if OS_ARG_CHK_EN > 0

    if (pgrp == (OS_FLAG_GRP *)0) {                                            (1)

        *err = OS_FLAG_INVALID_PGRP;

        return ((OS_FLAGS)0);

    }

    if (pgrp->OSFlagType != OS_EVENT_TYPE_FLAG) {                             (2)

        *err = OS_ERR_EVENT_TYPE;

        return ((OS_FLAGS)0);

    }

#endif

    OS_ENTER_CRITICAL();

    switch (opt) {                                                            (3)

        case OS_FLAG_CLR:

             pgrp->OSFlagFlags &= ~flags;                                     (4)

             break;

             

        case OS_FLAG_SET:

             pgrp->OSFlagFlags |=  flags;                                     (5)

             break;
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        default:

             OS_EXIT_CRITICAL();                     

             *err = OS_FLAG_INVALID_OPT;

             return ((OS_FLAGS)0);

    }

    sched = FALSE;                                                            (6)

    pnode = pgrp->OSFlagWaitList;                

    while (pnode != (OS_FLAG_NODE *)0) {                                      (7)

        switch (pnode->OSFlagNodeWaitType) {

            case OS_FLAG_WAIT_SET_ALL:                                        (8)

                 flags_rdy = pgrp->OSFlagFlags & pnode->OSFlagNodeFlags;

                 if (flags_rdy == pnode->OSFlagNodeFlags) {                   (9)

                     if (OS_FlagTaskRdy(pnode, flags_rdy) == TRUE) {         (10)

                         sched = TRUE;                                       (11)

                     }

                 }

                 break;

            case OS_FLAG_WAIT_SET_ANY:               

                 flags_rdy = pgrp->OSFlagFlags & pnode->OSFlagNodeFlags;

                 if (flags_rdy != (OS_FLAGS)0) {    

                     if (OS_FlagTaskRdy(pnode, flags_rdy) == TRUE) {

                         sched = TRUE;                              

                     }

                 }

                 break;

#if OS_FLAG_WAIT_CLR_EN > 0

            case OS_FLAG_WAIT_CLR_ALL:               

                 flags_rdy = ~pgrp->OSFlagFlags & pnode->OSFlagNodeFlags;

                 if (flags_rdy == pnode->OSFlagNodeFlags) {     

                     if (OS_FlagTaskRdy(pnode, flags_rdy) == TRUE) {

                         sched = TRUE;                              

                     }

                 }

                 break;

Listing 9.7 Setting or clearing bits (i.e., events) in an event flag 
group. (Continued)
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L9.7(1)

L9.7(2) Assuming that the configuration constant OS_ARG_CHK_EN is set to 1, OSFlagPost() makes
sure that the handle pgrp is not a NULL pointer and that pgrp points to an event flag group that
should have been created by OSFlagCreate().

L9.7(3)

L9.7(4)

L9.7(5) Depending on the option you specified in the opt argument of OSFlagPost(), the flags spec-
ified in the flags argument are either set (when opt == OS_FLAG_SET) or cleared (when opt
== OS_FLAG_CLR).  If opt is not one of the two choices, the call is aborted, and an error code
is returned to the caller.

L9.7(6) We next start by assuming that posting doesn’t make a higher priority task ready to run, and
thus we set the boolean variable sched to FALSE.  If this assumption is not verified because
we make a higher priority task ready to run, then sched is simply be set to TRUE.

L9.7(7) We then go through the wait list to see if any task is waiting on one or more events.

            case OS_FLAG_WAIT_CLR_ANY:               

                 flags_rdy = ~pgrp->OSFlagFlags & pnode->OSFlagNodeFlags;

                 if (flags_rdy != (OS_FLAGS)0) {    

                     if (OS_FlagTaskRdy(pnode, flags_rdy) == TRUE) {

                         sched = TRUE;                              

                     }

                 }

                 break;

#endif                 

        }

        pnode = pnode->OSFlagNodeNext;                                       (12)

    }

    OS_EXIT_CRITICAL();

    if (sched == TRUE) {                                                     (13)

        OS_Sched();                                                          (14)

    }

    OS_ENTER_CRITICAL();

    flags_cur = pgrp->OSFlagFlags;                                           (15)

    OS_EXIT_CRITICAL();

    *err      = OS_NO_ERR;

    return (flags_cur);                                                      (16)

}

Listing 9.7 Setting or clearing bits (i.e., events) in an event flag 
group. (Continued)



218 Chapter 9: Event Flag Management
L9.7(15)

L9.7(16) If the wait list is empty, we simply get the current state of the event flag bits and return this
information to the caller.

L9.7(8) If one or more tasks are waiting on the event flag group, we go through the list of OS_FLAG_NODEs
to see if the new event flag bits now satisfy any of the waiting task conditions.  Each one of the
tasks can be waiting for one of four conditions:

1. all of the bits specified in the PEND call to be set.

2. any of the bits specified in the PEND call to be set.

3. all of the bits specified in the PEND call to be cleared.

4. any of the bits specified in the PEND call to be cleared.

L9.7(9)

L9.7(10) Note that the last two conditions can be compiled out by setting OS_FLAG_WAIT_CLR_EN to 0
(see OS_CFG.H).  You would do this if you didn’t need the functionality of waiting for cleared
bits and/or you need to reduce the amount of ROM in your product.  When a waiting task’s
condition is satisfied, the waiting task is readied by calling OS_FlagTaskRdy() (see Listing
9.9).  I only discuss the first wait condition because the other cases are similar enough.

L9.7(11) Because a task is made ready to run, the scheduler has to be called.  However, we only call
the scheduler after going through all waiting tasks because there is no need to call the sched-
uler every time a task is made ready to run.

L9.7(12) We proceed to the next node by following the linked list.  

You should note that interrupts are disabled while we are going through the wait list.  The implica-
tion is that OSFlagPost() can potentially disable interrupts for a long period of time, especially if mul-
tiple tasks are made ready to run. However, execution time is bounded and still deterministic.

L9.7(13)

L9.7(14) When we have gone through the whole waiting list, we examine the sched flag to see if we
need to run the scheduler and thus possibly perform a context switch to a higher priority task
that just received the event flag(s) for which it was waiting.

L9.7(15)

L9.7(16) OSFlagPost() returns the current state of the event flag group.

As previously mentioned, the code in Listing 9.8 is executed to make a task ready to run.

Listing 9.8 Make a waiting task ready to run. 
static  BOOLEAN  OS_FlagTaskRdy (OS_FLAG_NODE *pnode, OS_FLAGS flags_rdy)

{

    OS_TCB   *ptcb;

    BOOLEAN   sched;

                                                        

    ptcb                = (OS_TCB *)pnode->OSFlagNodeTCB;

    ptcb->OSTCBDly      = 0;                             

    ptcb->OSTCBFlagsRdy = flags_rdy;                     
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L9.8(4) This procedure is standard in µC/OS-II except for the fact that the OS_FLAG_NODE needs to be
unlinked from the waiting list of the event flag group, as well as the task’s OS_TCB (see Sec-
tion 6.05, “Making a Task Ready, OS_EventTaskRdy()”).

L9.8(1)

L9.8(2)

L9.8(3) Note that even though this function removes the waiting task from the event flag group wait
list, the task could still be suspended and might not be ready to run, which is why the bool-
ean variable sched is used and returned to the caller.

The unlinking of the OS_FLAG_NODE is performed by the function OS_FlagUnlink(), as shown in
Listing 9.9.  Figure 9.5 shows the four possible locations of an OS_FLAG_NODE, which needs to be
removed from the event flag wait list.  The doubly linked list removal problem is classic except that
other pointers must be adjusted.

    ptcb->OSTCBStat    &= ~OS_STAT_FLAG;

    if (ptcb->OSTCBStat == OS_STAT_RDY) {                                     (1)

        OSRdyGrp               |= ptcb->OSTCBBitY;

        OSRdyTbl[ptcb->OSTCBY] |= ptcb->OSTCBBitX;

        sched                   = TRUE;                                       (2)

    } else {

        sched                   = FALSE;                                      (3)

    }

    OS_FlagUnlink(pnode);                                                     (4)

    return (sched);

}

Listing 9.9 Unlinking an OS_FLAG_NODE. 
void  OS_FlagUnlink (OS_FLAG_NODE *pnode)

{

#if OS_TASK_DEL_EN > 0

    OS_TCB       *ptcb;

#endif

    OS_FLAG_GRP  *pgrp;

    OS_FLAG_NODE *pnode_prev;

    OS_FLAG_NODE *pnode_next;

    

    

    pnode_prev = pnode->OSFlagNodePrev;                                       (1)

    pnode_next = pnode->OSFlagNodeNext;                                       (2)

    if (pnode_prev == (OS_FLAG_NODE *)0) {                                    (3)

        pgrp                 = pnode->OSFlagNodeFlagGrp;                      (4)

        pgrp->OSFlagWaitList = (void *)pnode_next;                            (5)

Listing 9.8 Make a waiting task ready to run. (Continued)
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Figure 9.5 Removing an OS_FLAG_NODE from the wait list.

        if (pnode_next != (OS_FLAG_NODE *)0) {                                (6)

            pnode_next->OSFlagNodePrev = (OS_FLAG_NODE *)0;                   (7)

        }

    } else {                                                              

        pnode_prev->OSFlagNodeNext = pnode_next;                              (8)

        if (pnode_next != (OS_FLAG_NODE *)0) {                                (9)

            pnode_next->OSFlagNodePrev = pnode_prev;                         (10)

        }

    }

#if OS_TASK_DEL_EN > 0

    ptcb                = (OS_TCB *)pnode->OSFlagNodeTCB;                    (11)

    ptcb->OSTCBFlagNode = (void *)0;                                         (12)

#endif

}

Listing 9.9 Unlinking an OS_FLAG_NODE. (Continued)
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L9.9(1)

L9.9(2) OS_FlagUnlink() starts off by setting up two local pointers: pnode_next and pnode_prev,
which point to the next and previous OS_FLAG_NODE in the wait list, respectively.

L9.9(3)

F9.5(A,B)The previous pointer is examined to see if we have the first two cases of Figure 9.6 (an
OS_FLAG_NODE, which is the first node in the wait list).

L9.9(4)

L9.9(5) If the OS_FLAG_NODE is the first node, the wait-list pointer of the event flag group needs to
point to the node immediately after the OS_FLAG_NODE to be removed.

L9.9(6)

L9.9(7)

F9.5(B) If an OS_FLAG_NODE is to the right of the node to delete, then that node now points to where
the previous pointer of the node to delete is pointing, which is, of course, a NULL pointer
because the node to remove was the first one.

L9.9(8)

F9.5(C,D) Because the node to delete is not the first node in the wait list, the node to the left of the node
to delete must now point to the node to the right of the node to delete.

L9.9(9)

L9.9(10) If a node is to the right of the node to delete, the previous pointer of that node must now point
to the previous node of the node to delete.

L9.9(11)

L9.9(12) In all cases, the .OSTCBFlagNode field must now point to NULL because the node to be
deleted will no longer exist after it’s deallocated from the task that created the node in the
first place.

Figures 9.6 through 9.9 show the before and after for each case mentioned.  The number in parenthesis
corresponds to the number in parenthesis of list Listing 9.9.  You should notice that OS_FlagUnlink()
updates three pointers at most.  Because the node being removed exists on the stack of the task being read-
ied (it was allocated by OSFlagPend()), that node automatically disappears!  As far as the task that
pended on the event flag is concerned, it doesn’t even know about the OS_FLAG_NODE.
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Figure 9.6 Removing an OS_FLAG_NODE from the wait list,
Case A.

Figure 9.7 Removing an OS_FLAG_NODE from the wait list,
Case B.
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Figure 9.8 Removing an OS_FLAG_NODE from the wait list,
Case C.

Figure 9.9 Removing an OS_FLAG_NODE from the wait list,
Case D.
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9.05 Looking for Event(s) of an Event Flag Group, 
OSFlagAccept()

The code to look for desired event(s) from an event flag group without waiting is shown in Listing 9.10.
This function is quite similar to OSFlagPend() except that the caller is not suspended (i.e., blocked)
should the event(s) not be present.  The only two different things are:

1. OSFlagAccept() can be called from an ISR, unlike some of the other calls.

2. If the conditions are not met, the call does not block and simply returns an error code that the caller 
should check.

Listing 9.10 Looking for event flags without waiting. 
OS_FLAGS  OSFlagAccept (OS_FLAG_GRP *pgrp, OS_FLAGS flags, INT8U wait_type, INT8U *err)

{

#if OS_CRITICAL_METHOD == 3                                

    OS_CPU_SR     cpu_sr;

#endif    

    OS_FLAGS      flags_cur;

    OS_FLAGS      flags_rdy;

    BOOLEAN       consume;

#if OS_ARG_CHK_EN > 0

    if (pgrp == (OS_FLAG_GRP *)0) {                        

        *err = OS_FLAG_INVALID_PGRP;

        return ((OS_FLAGS)0);

    }

    if (pgrp->OSFlagType != OS_EVENT_TYPE_FLAG) {          

        *err = OS_ERR_EVENT_TYPE;

        return ((OS_FLAGS)0);

    }

#endif

    if (wait_type & OS_FLAG_CONSUME) {                     

        wait_type &= ~OS_FLAG_CONSUME;

        consume    = TRUE;

    } else {

        consume    = FALSE;

    }

    OS_ENTER_CRITICAL();

    switch (wait_type) {
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        case OS_FLAG_WAIT_SET_ALL:                         

             flags_rdy = pgrp->OSFlagFlags & flags;        

             if (flags_rdy == flags) {                     

                 if (consume == TRUE) {                    

                     pgrp->OSFlagFlags &= ~flags_rdy;      

                 }

                 flags_cur = pgrp->OSFlagFlags;            

                 OS_EXIT_CRITICAL();                       

                 *err      = OS_NO_ERR;

             } else {

                 flags_cur = pgrp->OSFlagFlags;

                 OS_EXIT_CRITICAL();

                 *err      = OS_FLAG_ERR_NOT_RDY;

             }

             break;

        case OS_FLAG_WAIT_SET_ANY:

             flags_rdy = pgrp->OSFlagFlags & flags;        

             if (flags_rdy != (OS_FLAGS)0) {               

                 if (consume == TRUE) {                    

                     pgrp->OSFlagFlags &= ~flags_rdy;      

                 }

                 flags_cur = pgrp->OSFlagFlags;            

                 OS_EXIT_CRITICAL();                       

                 *err      = OS_NO_ERR;

             } else {

                 flags_cur = pgrp->OSFlagFlags;

                 OS_EXIT_CRITICAL();

                 *err      = OS_FLAG_ERR_NOT_RDY;

             }

             break;

#if OS_FLAG_WAIT_CLR_EN > 0

        case OS_FLAG_WAIT_CLR_ALL:                         

             flags_rdy = ~pgrp->OSFlagFlags & flags;       

             if (flags_rdy == flags) {                     

                 if (consume == TRUE) {                    

                     pgrp->OSFlagFlags |= flags_rdy;       

                 }

Listing 9.10 Looking for event flags without waiting. (Continued)
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                 flags_cur = pgrp->OSFlagFlags;            

                 OS_EXIT_CRITICAL();                       

                 *err      = OS_NO_ERR;

             } else {

                 flags_cur = pgrp->OSFlagFlags;

                 OS_EXIT_CRITICAL();

                 *err      = OS_FLAG_ERR_NOT_RDY;

             }

             break;

        case OS_FLAG_WAIT_CLR_ANY:

             flags_rdy = ~pgrp->OSFlagFlags & flags;       

             if (flags_rdy != (OS_FLAGS)0) {               

                 if (consume == TRUE) {                    

                     pgrp->OSFlagFlags |= flags_rdy;       

                 }

                 flags_cur = pgrp->OSFlagFlags;            

                 OS_EXIT_CRITICAL();                       

                 *err      = OS_NO_ERR;

             } else {

                 flags_cur = pgrp->OSFlagFlags;

                 OS_EXIT_CRITICAL();

                 *err      = OS_FLAG_ERR_NOT_RDY;

             }

             break;

#endif

        default:

             OS_EXIT_CRITICAL();

             flags_cur = (OS_FLAGS)0;

             *err      = OS_FLAG_ERR_WAIT_TYPE;

             break;

    }

    return (flags_cur);

}

Listing 9.10 Looking for event flags without waiting. (Continued)
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9.06 Querying an Event Flag Group, 
OSFlagQuery()

OSFlagQuery() allows your code to get the current value of the event flag group. The code for this func-
tion is shown in Listing 9.11.

OSFlagQuery() is passed two arguments: pgrp contains a pointer to the event flag group, which was
returned by OSFlagCreate() when the event flag group is created; and err, which is a pointer to an
error code that lets the caller know whether the call was successful or not.

L9.11(1)

L9.11(2) As with all µC/OS-II calls, OSFlagQuery() performs argument checking if this feature is
enabled when OS_ARG_CHK_EN is set to 1 in OS_CFG.H.

L9.11(3)

L9.11(4) If no errors exist, OSFlagQuery() obtains the current state of the event flags and returns this
information to the caller.

Listing 9.11 Obtaining the current flags of an event flag group.
OS_FLAGS  OSFlagQuery (OS_FLAG_GRP *pgrp, INT8U *err)

{

#if OS_CRITICAL_METHOD == 3                       

    OS_CPU_SR  cpu_sr;

#endif    

    OS_FLAGS   flags;

#if OS_ARG_CHK_EN > 0

    if (pgrp == (OS_FLAG_GRP *)0) {                                           (1)

        *err = OS_FLAG_INVALID_PGRP;

        return ((OS_FLAGS)0);

    }

    if (pgrp->OSFlagType != OS_EVENT_TYPE_FLAG) {                             (2)

        *err = OS_ERR_EVENT_TYPE;

        return ((OS_FLAGS)0);

    }

#endif    

    OS_ENTER_CRITICAL();

    flags = pgrp->OSFlagFlags;                                                (3)

    OS_EXIT_CRITICAL();

    *err = OS_NO_ERR;

    return (flags);                                                           (4)

}
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Chapter 10

Message Mailbox Management
A message mailbox (or simply a mailbox) is a µC/OS-II object that allows a task or an ISR to send a
pointer-sized variable to another task. The pointer is typically initialized to point to some applicationspecific
data structure containing a message. µC/OS-II provides six services to access mailboxes: OSMboxCreate(),
OSMboxPend(), OSMboxPost(), OSMboxPostOpt(), OSMboxAccept(), and OSMboxQuery().

To enable µC/OS-II message-mailbox services, you must set configuration constants in OS_CFG.H.
Specifically, Table 10.1 shows which services are compiled, based on the value of configuration constants
found in OS_CFG.H. You should note that none of the mailbox services are enabled when OS_MBOX_EN is
set to 0. To enable specific features (i.e., services) listed in Table 10.1, simply set the configuration con-
stant to 1. You should notice that OSMboxCreate() and OSMboxPend() cannot be individually disabled
like the other services. That’s because they are always needed when you enable µC/OS-II message mail-
box management. You must enable at least one of the post services: OSMboxPost() and
OSMboxPostOpt().

Figure 10.1 shows a flow diagram to illustrate the relationship between tasks, ISRs, and a message
mailbox. Note that the symbology used to represent a mailbox is an I-beam. The hourglass represents a
timeout that can be specified with the OSMboxPend() call. The content of the mailbox is a pointer to a

Table 10.1 Mailbox configuration constants in OS_CFG.H.

µC/OS-II Event Flag Service Enabled when set to 1 in OS_CFG.H
OSMboxAccept() OS_MBOX_ACCEPT_EN

OSMboxCreate()

OSMboxDel() OS_MBOX_DEL_EN

OSMboxPend()

OSMboxPost() OS_MBOX_POST_EN

OSMboxPostOpt() OS_MBOX_POST_OPT_EN

OSMboxQuery() OS_MBOX_QUERY_EN
 229



230 Chapter 10: Message Mailbox Management
message. What the pointer points to is application specific. A mailbox can only contain one pointer
(mailbox is full) or a pointer to NULL (mailbox is empty).

As you can see from Figure 10.1, a task or an ISR can call OSMboxPost() or OSMboxPostOpt().
However, only tasks are allowed to call OSMboxDel(), OSMboxPend(), and OSMboxQuery().  Your appli-
cation can have just about any number of mailboxes.  The limit is set by OS_MAX_EVENTS in OS_CFG.H.

Figure 10.1 Relationships between tasks, ISRs, and a message 
mailbox.

10.00 Creating a Mailbox, OSMboxCreate()
A mailbox needs to be created before it can be used. Creating a mailbox is accomplished by calling
OSMboxCreate() and specifying the initial value of the pointer. Typically, the initial value is a NULL
pointer, but a mailbox can initially contain a message. If you use the mailbox to signal the occurrence of
an event (i.e., send a message), you typically initialize it to a NULL pointer because the event (most
likely) has not occurred. If you use the mailbox to access a shared resource, you initialize the mailbox
with a non-NULL pointer. In this case, you basically use the mailbox as a binary semaphore.

The code to create a mailbox is shown in Listing 10.1.

Listing 10.1 Creating a mailbox. 
OS_EVENT  *OSMboxCreate (void *msg)

{

#if OS_CRITICAL_METHOD == 3

    OS_CPU_SR  cpu_sr;                                                       (1)

#endif    

    OS_EVENT  *pevent;

    if (OSIntNesting > 0) {                                                  (2)

        return ((OS_EVENT *)0);

    }
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L10.1(1) A local variable called cpu_sr to support OS_CRITICAL_METHOD #3 is allocated.

L10.1(2) OSMboxCreate() starts by making sure you are not calling this function from an ISR
because that’s not allowed.  All kernel objects need to be created from task-level code or
before multitasking starts.

L10.1(3) OSMboxCreate() then attempts to obtain an event control block (ECB) from the free list of
ECBs (see Figure 6.5).

L10.1(4)

L10.1(5) The linked list of free ECBs is adjusted to point to the next free ECB.

L10.1(6)

L10.1(7) If an ECB is available, the ECB type is set to OS_EVENT_TYPE_MBOX.  Other OSMbox???()
function calls checks this structure member to make sure that the ECB is of the proper type
(i.e., a mailbox).  This check prevents you from calling OSMboxPost() on an ECB that was
created for use as a message queue.

L10.1(8) The .OSEventCnt field is then initialized to zero because this field is not used by message
mailboxes.

L10.1(9) The initial value of the message is stored in the ECB.  

L10.1(10) The wait list is then initialized by calling OS_EventWaitListInit() [see Section 6.04, “Ini-
tializing an ECB, OS_EventWaitListInit()”].  Because the mailbox is being initialized,
no tasks are waiting for it, and thus OS_EventWaitListInit() clears the .OSEventGrp and
.OSEventTbl[] fields of the ECB.

L10.1(11) Finally, OSMboxCreate() returns a pointer to the ECB.  This pointer must be used in sub-
sequent calls to manipulate mailboxes [OSMboxAccept(), OSMboxDel(), OSMboxPend(),
OSMboxPost(), OSMboxPostOpt(), and OSMboxQuery()].  The pointer is basically used as
the mailbox handle.  If no more ECBs are present, OSMboxCreate() returns a NULL pointer.
You should make it a habit to check return values to ensure that you are getting the desired

    OS_ENTER_CRITICAL();

    pevent = OSEventFreeList;                                                (3)

    if (OSEventFreeList != (OS_EVENT *)0) {                                  (4)

        OSEventFreeList = (OS_EVENT *)OSEventFreeList->OSEventPtr;           (5)

    }

    OS_EXIT_CRITICAL();

    if (pevent != (OS_EVENT *)0) {                                           (6)

        pevent->OSEventType = OS_EVENT_TYPE_MBOX;                            (7)

        pevent->OSEventCnt  = 0;                                             (8)

        pevent->OSEventPtr  = msg;                                           (9)

        OS_EventWaitListInit(pevent);                                       (10)

    }

    return (pevent);                                                        (11)

}

Listing 10.1 Creating a mailbox. (Continued)
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results.  Passing NULL pointers to µC/OS-II does not make it fail because µC/OS-II validates
arguments (only if OS_ARG_CHK_EN is set to 1, though).  Figure 10.2 shows the content of the
ECB just before OSMboxCreate() returns.

Figure 10.2 ECB just before OSMboxCreate() returns.

10.01 Deleting a Mailbox, OSMboxDel()
The code to delete a mailbox is shown in Listing 10.2, and this code is only generated by the compiler if
OS_MBOX_DEL_EN is set to 1 in OS_CFG.H.  You must use this function with caution because multiple
tasks could attempt to access a deleted mailbox. Generally speaking, before you delete a mailbox, you
first delete all the tasks that can access the mailbox.

Listing 10.2 Deleting a mailbox. 
OS_EVENT  *OSMboxDel (OS_EVENT *pevent, INT8U opt, INT8U *err)

{

#if OS_CRITICAL_METHOD == 3                          

    OS_CPU_SR  cpu_sr;

#endif    

    BOOLEAN    tasks_waiting;

    if (OSIntNesting > 0) {                                                  (1)

        *err = OS_ERR_DEL_ISR;                

        return (pevent);

    }
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#if OS_ARG_CHK_EN > 0

    if (pevent == (OS_EVENT *)0) {                                           (2)

        *err = OS_ERR_PEVENT_NULL;

        return (pevent);

    }

    if (pevent->OSEventType != OS_EVENT_TYPE_MBOX) {                         (3)

        *err = OS_ERR_EVENT_TYPE;

        return (pevent);

    }

#endif

    OS_ENTER_CRITICAL();

    if (pevent->OSEventGrp != 0x00) {                                        (4)

        tasks_waiting = TRUE;          

    } else {

        tasks_waiting = FALSE;   

    }

    switch (opt) {

        case OS_DEL_NO_PEND: 

             if (tasks_waiting == FALSE) {

                 pevent->OSEventType = OS_EVENT_TYPE_UNUSED;                 (5)

                 pevent->OSEventPtr  = OSEventFreeList;                      (6)

                 OSEventFreeList     = pevent;                               (7)

                 OS_EXIT_CRITICAL();

                 *err = OS_NO_ERR;

                 return ((OS_EVENT *)0);                                     (8)

             } else {

                 OS_EXIT_CRITICAL();

                 *err = OS_ERR_TASK_WAITING;

                 return (pevent);

             }

        case OS_DEL_ALWAYS:                             

             while (pevent->OSEventGrp != 0x00) {                            (9)

                 OS_EventTaskRdy(pevent, (void *)0, OS_STAT_MBOX);          (10)

             }

             pevent->OSEventType = OS_EVENT_TYPE_UNUSED;                    (11)

             pevent->OSEventPtr  = OSEventFreeList;                         (12)

             OSEventFreeList     = pevent;          

             OS_EXIT_CRITICAL();

             if (tasks_waiting == TRUE) {         

Listing 10.2 Deleting a mailbox. (Continued)
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L10.2(1) OSMboxDel() starts by making sure that this function is not called from an ISR because that’s
not allowed.

L10.2(2)

L10.2(3) We then validate pevent to ensure that it’s not a NULL pointer and that it points to an ECB
that was created as a mailbox.

L10.2(4) OSMboxDel() then determines whether any tasks are waiting on the mailbox.  The flag
tasks_waiting is set accordingly.

Based on the option (i.e., opt) specified in the call, OSMboxDel() either deletes the mail-
box only if no tasks are pending on the mailbox (opt == OS_DEL_NO_PEND) or deletes the
mailbox even if tasks are waiting (opt == OS_DEL_ALWAYS).

L10.2(5)

L10.2(6)

L10.2(7) When opt is set to OS_DEL_NO_PEND and no task is waiting on the mailbox, OSMboxDel()
marks the ECB as unused, and the ECB is returned to the free list of ECBs.   This process
allows another mailbox (or any other ECB-based object) to be created.

L10.2(8) You should note that OSMboxDel() returns a NULL pointer because, at this point, the mailbox
should no longer be accessed through the original pointer.  You ought to call OSMboxDel() as
follows

MbxPtr = OSMboxDel(MbxPtr, opt, &err);

This feature allows the pointer to the mailbox to be altered by the call. OSMboxDel()
returns an error code if any tasks are waiting on the mailbox (i.e., OS_ERR_TASK_WAITING)
because by specifying OS_DEL_NO_PEND you indicated that you didn’t want to delete the
mailbox if tasks are waiting on the mailbox.

L10.2(9)

L10.2(10) When opt is set to OS_DEL_ALWAYS, then all tasks waiting on the mailbox are readied.  Each
task thinks it received a NULL message.  Each task should examine the returned pointer to
make sure it’s non-NULL.  Also, you should note that interrupts are disabled while each task is
being readied.  This feature, of course, increases the interrupt latency of your system.

                 OS_Sched();                                                (13)

             }

             *err = OS_NO_ERR;

             return ((OS_EVENT *)0);                                        (14)

        default:

             OS_EXIT_CRITICAL();

             *err = OS_ERR_INVALID_OPT;

             return (pevent);

    }

}

Listing 10.2 Deleting a mailbox. (Continued)
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L10.2(11)

L10.2(12) After all pending tasks are readied, OSMboxDel() marks the ECB as unused, and the ECB is
returned to the free list of ECBs.  

L10.2(13) The scheduler is called only if tasks are waiting on the mailbox.  

L10.2(14) Again, you should note that OSMboxDel() returns a NULL pointer because, at this point, the
mailbox should no longer be accessed through the original pointer.

10.02 Waiting for a Message at a Mailbox,
OSMboxPend()

The code to wait for a message to arrive at a mailbox is shown in Listing 10.3.  

Listing 10.3 Waiting for a message at a mailbox (blocking), 
OSMboxPend(). 

void  *OSMboxPend (OS_EVENT *pevent, INT16U timeout, INT8U *err)

{

#if OS_CRITICAL_METHOD == 3

    OS_CPU_SR  cpu_sr;

#endif

    void      *msg;

    if (OSIntNesting > 0) {                                                  (1)

        *err = OS_ERR_PEND_ISR;

        return ((void *)0);

    }

#if OS_ARG_CHK_EN > 0

    if (pevent == (OS_EVENT *)0) {                                           (2)

        *err = OS_ERR_PEVENT_NULL;

        return ((void *)0);

    }

    if (pevent->OSEventType != OS_EVENT_TYPE_MBOX) {                         (3)

        *err = OS_ERR_EVENT_TYPE;

        return ((void *)0);

    }

#endif
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L10.3(1) OSMboxPend() checks to see if the function was called by an ISR. It doesn’t make sense to
call OSMboxPend() from an ISR because an ISR cannot be made to wait. Instead, you should
call OSMboxAccept() (see Section Section 10.05, “Getting a Message without Waiting
(Non-blocking), OSMboxAccept()”).

L10.3(2)

L10.3(3) If OS_ARG_CHK_EN (see OS_CFG.H) is set to 1, OSMboxPend() checks that pevent is not a NULL
pointer and that the ECB to which pevent is pointing has been created by OSMboxCreate().

    OS_ENTER_CRITICAL();

    msg = pevent->OSEventPtr;                                                (4)

    if (msg != (void *)0) {                           

        pevent->OSEventPtr = (void *)0;                                      (5)

        OS_EXIT_CRITICAL();

        *err = OS_NO_ERR;

        return (msg);                                                        (6)

    }

    OSTCBCur->OSTCBStat |= OS_STAT_MBOX;                                     (7)

    OSTCBCur->OSTCBDly   = timeout;                                          (8)

    OS_EventTaskWait(pevent);                                                (9)

    OS_EXIT_CRITICAL();

    OS_Sched();                                                             (10)

    OS_ENTER_CRITICAL();

    msg = OSTCBCur->OSTCBMsg;

    if (msg != (void *)0) {                                                 (11)

        OSTCBCur->OSTCBMsg      = (void *)0;

        OSTCBCur->OSTCBStat     = OS_STAT_RDY;

        OSTCBCur->OSTCBEventPtr = (OS_EVENT *)0;

        OS_EXIT_CRITICAL();

        *err                    = OS_NO_ERR;

        return (msg);                                                       (12)

    }

    OS_EventTO(pevent);                                                     (13)

    OS_EXIT_CRITICAL();

    *err = OS_TIMEOUT; 

    return ((void *)0);                                                     (14)

}

Listing 10.3 Waiting for a message at a mailbox (blocking), 
OSMboxPend(). (Continued)
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L10.3(4)

L10.3(5)

L10.3(6) If a message has been deposited in the mailbox (non-NULL pointer), the message is extracted from
the mailbox and replaced with a NULL pointer, and the function returns to its caller with the mes-
sage that was in the mailbox. An error code is also set indicating success. If your code calls
OSMboxPend(), this outcome is the one for which you are looking because it indicates that
another task or an ISR already deposited a message. This path is the fastest through
OSMboxPend().

If the mailbox is empty, the calling task needs to be put to sleep until another task (or an
ISR) sends a message through the mailbox [see Section 10.04, “Sending a Message to a
Mailbox, OSMboxPostOpt()”]. OSMboxPend() allows you to specify a timeout value (in
integral number of ticks) as one of its arguments (i.e., timeout). This feature is useful to
avoid waiting indefinitely for a message to arrive at the mailbox. If the timeout value is non-
zero, OSMboxPend() suspends the task until the mailbox receives a message or the specified
timeout period expires. Note that a timeout value of 0 indicates that the task is willing to wait
forever for a message to arrive.

L10.3(7) To put the calling task to sleep, OSMboxPend() sets the status flag in the task’s task control
block (TCB) to indicate that the task is suspended waiting at a mailbox.

L10.3(8) The timeout is also stored in the TCB so that it can be decremented by OSTimeTick(). You
should recall (see Section 3.11, “Clock Tick”) that OSTimeTick() decrements each of the
created task’s .OSTCBDly field if it’s nonzero.

L10.3(9) The actual work of putting the task to sleep is done by OS_EventTaskWait() [see Section
6.06, “Making a Task Wait for an Event, OS_EventTaskWait()”].

L10.3(10) Because the calling task is no longer ready to run, the scheduler is called to run the next highest
priority task that is ready to run. As far as your task is concerned, it made a call to OSMboxPend(),
and it doesn’t know that it is suspended until a message arrives. When the mailbox receives a
message (or the timeout period expires), OSMboxPend() resumes execution immediately after
the call to OS_Sched().

L10.3(11) When OS_Sched() returns, OSMboxPend() checks to see if a message has been placed in the
task’s TCB by OSMboxPost().

L10.3(12) If so, the call is successful, and the message is returned to the caller.

L10.3(13) If a message is not received, then OS_Sched() must have returned because of a timeout. The
calling task is then removed from the mailbox wait list by calling OS_EventTO().

L10.3(14) Note that the returned pointer is set to NULL because no message is available to return. The
calling task should either examine the contents of the return pointer or the return code to
determine whether a valid message has been received.
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10.03 Sending a Message to a Mailbox, OSMboxPost()
The code to deposit a message in a mailbox is shown in Listing 10.4. 

Listing 10.4 Posting a message to a mailbox,
OSMboxPost(). 

INT8U  OSMboxPost (OS_EVENT *pevent, void *msg)

{

#if OS_CRITICAL_METHOD == 3                      

    OS_CPU_SR  cpu_sr;

#endif    

    

    

#if OS_ARG_CHK_EN > 0

    if (pevent == (OS_EVENT *)0) {                                           (1)

        return (OS_ERR_PEVENT_NULL);

    }

    if (msg == (void *)0) {  

        return (OS_ERR_POST_NULL_PTR);

    }

    if (pevent->OSEventType != OS_EVENT_TYPE_MBOX) {

        return (OS_ERR_EVENT_TYPE);

    }

#endif

    OS_ENTER_CRITICAL();

    if (pevent->OSEventGrp != 0x00) {                                        (2)

        OS_EventTaskRdy(pevent, msg, OS_STAT_MBOX);                          (3)

        OS_EXIT_CRITICAL();

        OS_Sched();                                                          (4)

        return (OS_NO_ERR);

    }

    if (pevent->OSEventPtr != (void *)0) {                                   (5)

        OS_EXIT_CRITICAL();

        return (OS_MBOX_FULL);

    }

    pevent->OSEventPtr = msg;                                                (6)

    OS_EXIT_CRITICAL();

    return (OS_NO_ERR);

}
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L10.4(1) If OS_ARG_CHK_EN is set to 1 in OS_CFG.H, OSMboxPost() checks to see that pevent is not a
NULL pointer, that the message being posted is not a NULL pointer, and finally makes sure that
the ECB is a mailbox.

L10.4(2) OSMboxPost() then checks to see if any task is waiting for a message to arrive at the mail-
box. Tasks are waiting when the .OSEventGrp field in the ECB contains a nonzero value.

L10.4(3) The highest priority task waiting for the message is removed from the wait list by
OS_EventTaskRdy() [see Section 6.05, “Making a Task Ready, OS_EventTaskRdy()”],
and this task is made ready to run.

L10.4(4) OS_Sched() is then called to see if the task made ready is now the highest priority task ready
to run. If it is, a context switch results [only if OSMboxPost() is called from a task], and the
readied task is executed. If the readied task is not the highest priority task, OS_Sched()
returns, and the task that called OSMboxPost() continues execution.

L10.4(5) At this point, no tasks are waiting for a message at the specified mailbox. OSMboxPost() then
checks to see that a message isn’t already in the mailbox. Because the mailbox can only hold
one message, an error code is returned if we get this outcome.

L10.4(6) If no tasks are waiting for a message to arrive at the mailbox, then the pointer to the message is
saved in the mailbox. Storing the pointer in the mailbox allows the next task to call OSMboxPend()
to get the message immediately.

Note that a context switch does not occur if OSMboxPost() is called by an ISR because context
switching from an ISR only occurs when OSIntExit() is called at the completion of the ISR and from
the last nested ISR (see Section 3.10, “Interrupts Under µC/OS-II”).

10.04 Sending a Message to a Mailbox, 
OSMboxPostOpt()

You can also post a message to a mailbox using an alternate and more powerful function called OSMboxPostOpt().
There are two post calls for backwards compatibility with previous versions of µC/OS-II.
OSMboxPostOpt() is the newer function and can replace OSMboxPost(). In addition, OSMboxPostOpt()
allows posting a message to all tasks (i.e., broadcast) waiting on the mailbox. The code to deposit a mes-
sage in a mailbox is shown in Listing 10.5. 

Listing 10.5 Posting a message to a mailbox, 
OSMboxPostOpt(). 

INT8U  OSMboxPostOpt (OS_EVENT *pevent, void *msg, INT8U opt)

{

#if OS_CRITICAL_METHOD == 3                      

    OS_CPU_SR  cpu_sr;

#endif    
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L10.5(1) If OS_ARG_CHK_EN is set to 1 in OS_CFG.H, OSMboxPostOpt() checks to see that pevent is
not a NULL pointer, that the message being posted is not a NULL pointer, and finally checks to
make sure that the ECB is a mailbox.

L10.5(2) OSMboxPost() then checks to see if any task is waiting for a message to arrive at the mail-
box. Tasks are waiting when the .OSEventGrp field in the ECB contains a nonzero value.

#if OS_ARG_CHK_EN > 0

    if (pevent == (OS_EVENT *)0) {                                           (1)

        return (OS_ERR_PEVENT_NULL);

    }

    if (msg == (void *)0) {                           

        return (OS_ERR_POST_NULL_PTR);

    }

    if (pevent->OSEventType != OS_EVENT_TYPE_MBOX) {  

        return (OS_ERR_EVENT_TYPE);

    }

#endif

    OS_ENTER_CRITICAL();

    if (pevent->OSEventGrp != 0x00) {                                        (2)

        if ((opt & OS_POST_OPT_BROADCAST) != 0x00) {                         (3)

            while (pevent->OSEventGrp != 0x00) {                             (4) 

                OS_EventTaskRdy(pevent, msg, OS_STAT_MBOX);                  (5)

            }

        } else {

            OS_EventTaskRdy(pevent, msg, OS_STAT_MBOX);                      (6)

        }

        OS_EXIT_CRITICAL();

        OS_Sched();                                                          (7)

        return (OS_NO_ERR);

    }

    if (pevent->OSEventPtr != (void *)0) {                                   (8)

        OS_EXIT_CRITICAL();

        return (OS_MBOX_FULL);

    }

    pevent->OSEventPtr = msg;                                                (9)

    OS_EXIT_CRITICAL();

    return (OS_NO_ERR);

}

Listing 10.5 Posting a message to a mailbox, 
OSMboxPostOpt(). (Continued)
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L10.5(3)

L10.5(4)

L10.5(5) If you set the OS_POST_OPT_BROADCAST bit in the opt argument, then all tasks waiting for a mes-
sage receives the message.   All tasks waiting for the message are removed from the wait list by
OS_EventTaskRdy() [see Section 6.05, “Making a Task Ready, OS_EventTaskRdy()”].
You should notice that interrupt-disable time is proportional to the number of tasks waiting for a
message from the mailbox.

L10.5(6) If a broadcast was not requested, then only the highest priority task waiting for a message is
made ready to run.  The highest priority task waiting for the message is removed from the
wait list by OS_EventTaskRdy().

L10.5(7) OS_Sched() is then called to see if the task made ready is now the highest priority task ready
to run.  If it is, a context switch results [only if OSMboxPostOpt() is called from a task], and
the readied task is executed.  If the readied task is not the highest priority task, OS_Sched()
returns, and the task that called OSMboxPostOpt() continues execution.

L10.5(8) If nothing is waiting for a message, the message to post needs to be placed in the mailbox.  In
this case, OSMboxPostOpt() makes sure that a message isn’t already in the mailbox.
Remember that a mailbox can only contain one message.  An error code is returned if an
attempt is made to add a message to an already full mailbox.

L10.5(9) OSMboxPostOpt() then deposits the message in the mailbox.

Note that a context switch does not occur if OSMboxPostOpt() is called by an ISR because context
switching from an ISR only occurs when OSIntExit() is called at the completion of the ISR and from
the last nested ISR (see Section 3.10, “Interrupts Under µC/OS-II”).

10.05 Getting a Message without Waiting 
(Non-blocking), OSMboxAccept()

You can obtain a message from a mailbox without putting a task to sleep if the mailbox is empty.  This
action is accomplished by calling OSMboxAccept(), shown in Listing 10.6. 

Listing 10.6 Getting a message without waiting. 
void  *OSMboxAccept (OS_EVENT *pevent)

{

#if OS_CRITICAL_METHOD == 3                      

    OS_CPU_SR  cpu_sr;

#endif    

    void      *msg;

#if OS_ARG_CHK_EN > 0

    if (pevent == (OS_EVENT *)0) {                                           (1)

        return ((void *)0);
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L10.6(1)

L10.6(2) If OS_ARG_CHK_EN is set to 1 in OS_CFG.H, OSMboxAccept() starts by checking that
pevent is not a NULL pointer and that the ECB to which pevent is pointing has been cre-
ated by OSMboxCreate().

L10.6(3) OSMboxAccept() then gets the current contents of the mailbox in order to determine whether
a message is available (i.e., a non-NULL pointer).

L10.6(4) If a message is available, the mailbox is emptied. You should note that this operation is done
even if the message already contains a NULL pointer. This operation is done for performance
considerations.

L10.6(5) Finally, the original contents of the mailbox is returned to the caller.

The code that calls OSMboxAccept() must examine the returned value. If OSMboxAccept() returns a
NULL pointer, then a message was not available. A non-NULL pointer indicates that a message has been
deposited in the mailbox. An ISR should use OSMboxAccept() instead of OSMboxPend().

You can use OSMboxAccept() to flush (i.e., empty) the contents of a mailbox.

10.06 Obtaining the Status of a Mailbox, 
OSMboxQuery()

OSMboxQuery() allows your application to take a snapshot of an ECB used for a message mailbox. The
code for this function is shown in Listing 10.7. OSMboxQuery() is passed two arguments: pevent con-
tains a pointer to the message mailbox, which is returned by OSMboxCreate() when the mailbox is cre-
ated; and pdata is a pointer to a data structure (OS_MBOX_DATA, see uCOS_II.H) that holds information
about the message mailbox. Your application needs to allocate a variable of type OS_MBOX_DATA that can
be used to receive the information about the desired mailbox. I decided to use a new data structure
because the caller should only be concerned with mailbox-specific data, as opposed to the more generic
OS_EVENT data structure, which contains two additional fields (.OSEventCnt and .OSEventType).

    }

    if (pevent->OSEventType != OS_EVENT_TYPE_MBOX) {                         (2)

        return ((void *)0);

    }

#endif

    OS_ENTER_CRITICAL();

    msg                = pevent->OSEventPtr;                                 (3)

    pevent->OSEventPtr = (void *)0;                                          (4)

    OS_EXIT_CRITICAL();

    return (msg);                                                            (5)

}

Listing 10.6 Getting a message without waiting. (Continued)
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OS_MBOX_DATA contains the current contents of the message (.OSMsg) and the list of tasks waiting for a
message to arrive (.OSEventTbl[] and .OSEventGrp). 

Listing 10.7 Obtaining the status of a mailbox. 
INT8U  OSMboxQuery (OS_EVENT *pevent, OS_MBOX_DATA *pdata)

{

#if OS_CRITICAL_METHOD == 3                      

    OS_CPU_SR  cpu_sr;

#endif    

    INT8U     *psrc;

    INT8U     *pdest;

#if OS_ARG_CHK_EN > 0

    if (pevent == (OS_EVENT *)0) {                                           (1)

        return (OS_ERR_PEVENT_NULL);

    }

    if (pevent->OSEventType != OS_EVENT_TYPE_MBOX) {                         (2)

        return (OS_ERR_EVENT_TYPE);

    }

#endif

    OS_ENTER_CRITICAL();

    pdata->OSEventGrp = pevent->OSEventGrp;                                  (3)

    psrc              = &pevent->OSEventTbl[0];

    pdest             = &pdata->OSEventTbl[0];

#if OS_EVENT_TBL_SIZE > 0

    *pdest++          = *psrc++;

#endif

#if OS_EVENT_TBL_SIZE > 1

    *pdest++          = *psrc++;

#endif

#if OS_EVENT_TBL_SIZE > 2

    *pdest++          = *psrc++;

#endif

#if OS_EVENT_TBL_SIZE > 3

    *pdest++          = *psrc++;

#endif
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L10.7(1)

L10.7(2) As always, if OS_ARG_CHK_EN is set to 1, OSMboxQuery() checks that pevent is not a NULL
pointer and that it points to an ECB containing a mailbox.

L10.7(3) OSMboxQuery() then copies the wait list. You should note that I decided to do the copy as
in-line code instead of using a loop for performance reasons.

L10.7(4) Finally, the current message, from the OS_EVENT structure, is copied to the OS_MBOX_DATA
structure.

10.07 Using a Mailbox as a Binary Semaphore
A message mailbox can be used as a binary semaphore by initializing the mailbox with a non-NULL
pointer [(void *)1 works well].  A task requesting the semaphore calls OSMboxPend() and releases the
semaphore by calling OSMboxPost().  Listing 10.8 shows how this process works.  You can use this
technique to conserve code space if your application only needs binary semaphores and mailboxes.  In
this case, set OS_MBOX_EN to 1 and OS_SEM_EN to 0 so that you use only mailboxes instead of both mail-
boxes and semaphores.

#if OS_EVENT_TBL_SIZE > 4

    *pdest++          = *psrc++;

#endif

#if OS_EVENT_TBL_SIZE > 5

    *pdest++          = *psrc++;

#endif

#if OS_EVENT_TBL_SIZE > 6

    *pdest++          = *psrc++;

#endif

#if OS_EVENT_TBL_SIZE > 7

    *pdest            = *psrc;

#endif

    pdata->OSMsg = pevent->OSEventPtr;                                       (4)

    OS_EXIT_CRITICAL();

    return (OS_NO_ERR);

}

Listing 10.7 Obtaining the status of a mailbox. (Continued)
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10.08 Using a Mailbox Instead of OSTimeDly()
The timeout feature of a mailbox can be used to simulate a call to OSTimeDly().  As shown in Listing
10.9, Task1() resumes execution after the time period expires if no message is received within the spec-
ified timeout.  This process is basically identical to OSTimeDly(TIMEOUT).  However, the task can be
resumed by Task2() when Task(2) posts a dummy message to the mailbox before the timeout expires.
This operation is the same as calling OSTimeDlyResume() had Task1() called OSTimeDly().  Note that
the returned message is ignored because you are not actually looking to get a message from another task
or an ISR.

Listing 10.8 Using a mailbox as a binary semaphore. 
OS_EVENT *MboxSem;

void Task1 (void *pdata)

{

    INT8U err;

    for (;;) {

        OSMboxPend(MboxSem, 0, &err);   /* Obtain access to resource(s)  */

        .

        .    /* Task has semaphore, access resource(s)                   */

        .

        OSMboxPost(MboxSem, (void *)1); /* Release access to resource(s) */

    }

}
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Listing 10.9 Using a mailbox as a time delay. 
OS_EVENT *MboxTimeDly;

void Task1 (void *pdata)

{

    INT8U err;

    for (;;) {

        OSMboxPend(MboxTimeDly, TIMEOUT, &err);   /* Delay task              */

        .

        .    /* Code executed after time delay or dummy message is received  */

        .

    }

}

void Task2 (void *pdata)

{

    INT8U err;

    for (;;) {

        OSMboxPost(MboxTimeDly, (void *)1);       /* Cancel delay for Task1  */

        .

        .

    }

}
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Chapter 11

Message Queue Management
A message queue (or simply a queue) is a µC/OS-II object that allows a task or an ISR to send
pointer-sized variables to another task. Each pointer typically is initialized to point to some applica-
tion-specific data structure containing a message. µC/OS-II provides nine services to access message
queues: OSQCreate(), OSQDel(), OSQPend(), OSQPost(), OSQPostFront(), OSQPostOpt(),
OSQAccept(), OSQFlush(), and OSQQuery(). 

To enable µC/OS-II message-queue services, you must set configuration constants in OS_CFG.H. Spe-
cifically, Table 11.1 shows which services are compiled, based on the value of configuration constants
found in OS_CFG.H. You should note that none of the queue services are enabled when OS_Q_EN is set to
0 or OS_MAX_QS is set to 0. To enable a specific feature (i.e., service), simply set the corresponding config-
uration constant to 1. You should notice that OSQCreate() and OSQPend() cannot be individually dis-
abled like the other services. That’s because they are always needed when you enable µC/OS-II message
queue management. You must enable at least one of the post services: OSQPost(), OSQPostFront(), and
OSQPostOpt().

Table 11.1 Message queue configuration constants in OS_CFG.H.

µC/OS-II Event Flag Service Enabled when set to 1 in OS_CFG.H
OSQAccept() OS_Q_ACCEPT_EN

OSQCreate()

OSQDel() OS_Q_DEL_EN

OSQFlush() OS_Q_FLUSH_EN

OSQPend()

OSQPost() OS_Q_POST_EN

OSQPostFront() OS_Q_POST_FRONT_EN

OSQPostOpt() OS_Q_POST_OPT_EN

OSQQuery() OS_Q_QUERY_EN
 247
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Figure 11.1 shows a flow diagram to illustrate the relationship between tasks, ISRs, and a message
queue. Note that the symbology used to represent a queue looks like a mailbox with multiple entries. In
fact, you can think of a queue as an array of mailboxes, except that only one wait list is associated with
the queue. The hourglass represents a timeout that can be specified with the OSQPend() call. Again,
what the pointers point to is application specific. N represents the number of entries the queue holds.
The queue is full when your application calls OSQPost() [or OSQPostFront() or OSQPostOpt()] N
times before your application has called OSQPend() or OSQAccept(). 

As you can see from Figure 11.1, a task or an ISR can call OSQPost(), OSQPostFront(), OSQPostOpt(),
OSQFlush(), or OSQAccept(). However, only tasks are allowed to call OSQDel(), OSQPend(), and
OSQQuery().

Figure 11.1 Relationships between tasks, ISRs, and a message 
queue.
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Figure 11.2 Data structures used in a message queue.

Figure 11.2 shows the different data structures needed to implement a message queue.

F11.2(1) An ECB is required because you need a wait list, and using an ECB allows queue services to
use some of the same code used by semaphores, mutexes, and mailboxes.

F11.2(2) When a message queue is created, a queue control block (i.e., an OS_Q, see OS_Q.C) is allo-
cated and linked to the ECB using the .OSEventPtr field in OS_EVENT.

F11.2(3) Before you create a queue, however, you need to allocate an array of pointers that contains
the desired number of queue entries. In other words, the number of elements in the array cor-
responds to the number of entries in the queue. The starting address of the array is passed to
OSQCreate() as an argument, as well as the size (in number of elements) of the array. In fact,
you don’t actually need to use an array as long as the memory occupies contiguous locations.

The configuration constant OS_MAX_QS in OS_CFG.H specifies how many queues you are allowed to
have in your application and must be greater than 0. When µC/OS-II is initialized, a list of free queue
control blocks is created, as shown in Figure 11.3.
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Figure 11.3 List of free queue control blocks.

A queue control block is a data structure used to maintain information about the queue. It contains
the fields described in the following list. Note that the fields are preceded with a dot to show that they
are members of a structure, as opposed to simple variables.

.OSQPtr links queue control blocks in the list of free queue control blocks. After the queue is cre-
ated, this field is not used.

.OSQStart contains a pointer to the start of the message queue storage area. Your application must
declare this storage area before creating the queue.

.OSQEnd is a pointer to one location past the end of the queue. This pointer is used to make the queue
a circular buffer.

.OSQIn is a pointer to the location in the queue where the next message will be inserted. .OSQIn is
adjusted back to the beginning of the message storage area when .OSQIn equals .OSQEnd.

.OSQOut is a pointer to the next message to be extracted from the queue. .OSQOut is adjusted back to
the beginning of the message storage area when .OSQOut equals .OSQEnd. .OSQOut is also used to insert
a message [see OSQPostFront() and OSQPostOpt()].

.OSQSize contains the size of the message storage area. The size of the queue is determined by your
application when the queue is created. Note that µC/OS-II allows the queue to contain up to 65,535
entries.

.OSQEntries contains the current number of entries in the message queue. The queue is empty
when .OSQEntries is 0 and full when it equals .OSQSize. The message queue is empty when the queue
is created.

A message queue is basically a circular buffer, as shown in Figure 11.4.
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Figure 11.4 A message queue as a circular buffer of pointers.

F11.4(1)

F11.4(3) Each entry contains a pointer. The pointer to the next message is deposited at the entry to which
.OSQIn points, unless the queue is full (i.e., .OSQEntries == .OSQSize). Depositing the
pointer at .OSQIn implements a First-In-First-Out (FIFO) queue, which is what OSQPost()
does.

F11.4(2) µC/OS-II implements a Last-In-First-Out (LIFO) queue by pointing to the entry preceding
.OSQOut and depositing the pointer at that location [see OSQPostFront() and OSQPostOpt()].

F11.4(4) The pointer is also considered full when .OSQEntries == .OSQSize. Message pointers are
always extracted from the entry to which .OSQOut points.

F11.4(5) The pointers .OSQStart and .OSQEnd are simply markers used to establish the beginning and
end of the array so that .OSQIn and .OSQOut can wrap around to implement this circular
motion.

11.00 Creating a Message Queue, OSQCreate()
A message queue (or simply a queue) needs to be created before it can be used. Creating a queue is
accomplished by calling OSQCreate() and passing it two arguments: a pointer to an array that holds the
messages and the size of this array. The array must be declared as an array of pointers to void, as fol-
lows

void *MyArrayOfMsg[SIZE];

You would pass the address of MyArrayOfMsg[] to OSQCreate(), as well as the size of this array.
The message queue is assumed to be initially empty — it doesn’t contain any messages.
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The code to create a queue is shown in Listing 11.1. 

Listing 11.1 Creating a message queue. 
OS_EVENT  *OSQCreate (void **start, INT16U size)

{

#if OS_CRITICAL_METHOD == 3 

    OS_CPU_SR  cpu_sr;                                                       (1)

#endif    

    OS_EVENT  *pevent;

    OS_Q      *pq;

    if (OSIntNesting > 0) {                                                  (2)

        return ((OS_EVENT *)0);                  

    }

    OS_ENTER_CRITICAL();

    pevent = OSEventFreeList;                                                (3)

    if (OSEventFreeList != (OS_EVENT *)0) {      

        OSEventFreeList = (OS_EVENT *)OSEventFreeList->OSEventPtr;

    }

    OS_EXIT_CRITICAL();

    if (pevent != (OS_EVENT *)0) {                                           (4)

        OS_ENTER_CRITICAL();                     

        pq = OSQFreeList;                        

        if (pq != (OS_Q *)0) {                   

            OSQFreeList         = OSQFreeList->OSQPtr; 

            OS_EXIT_CRITICAL();

            pq->OSQStart        = start;                                     (5)

            pq->OSQEnd          = &start[size];

            pq->OSQIn           = start;

            pq->OSQOut          = start;

            pq->OSQSize         = size;

            pq->OSQEntries      = 0;

            pevent->OSEventType = OS_EVENT_TYPE_Q;                           (6)

            pevent->OSEventCnt  = 0;

            pevent->OSEventPtr  = pq;

            OS_EventWaitListInit(pevent);                                    (7)

        } else {

            pevent->OSEventPtr = (void *)OSEventFreeList;                    (8)

            OSEventFreeList    = pevent;

            OS_EXIT_CRITICAL();



Deleting a Message Queue, OSQDel()  253

11
L11.1(1) A local variable called cpu_sr to support OS_CRITICAL_METHOD #3 is allocated.

L11.1(2) OSQCreate() starts by making sure you are not calling this function from an ISR because
that’s not allowed. All kernel objects need to be created from task-level code or before multi-
tasking starts.

L11.1(3) OSQCreate() then attempts to obtain an ECB from the free list of ECBs (see Figure 6.5) and
adjusts the linked list accordingly.

L11.1(4) If an ECB is available, OSQCreate() attempts to allocate a queue control block (OS_Q) from
the free list of queue control blocks (refer to Figure 11.3) and adjusts the linked list accord-
ingly.

L11.1(5)

L11.1(6) If a queue control block is available from the free list, the fields of the queue control block
are initialized, followed by the ones of the ECB. You should note that the .OSEventType
field is set to OS_EVENT_TYPE_Q so that subsequent message-queue services can check the
validity of the ECB.

L11.1(7) The wait list is cleared, indicating that no task is currently waiting on the message queue.

L11.1(8) If an ECB is available but a queue control block is not, then the ECB is returned to the free
list because we cannot satisfy the request to create a queue unless we also have a queue con-
trol block.

L11.1(9) OSQCreate() returns either a pointer to the ECB upon successfully creating a message queue
or a NULL pointer if not. This pointer must be used (if not NULL) in subsequent calls that oper-
ate on message queues. The pointer is used as the queue’s handle.

11.01 Deleting a Message Queue, OSQDel()
The code to delete a message queue is shown in Listing 11.2, and this code is only generated by the
compiler if OS_Q_DEL_EN is set to 1 in OS_CFG.H. You must use this function with caution because mul-
tiple tasks could attempt to access a deleted message queue. Generally speaking, before you delete a
message queue, you first delete all the tasks that can access the message queue.

            pevent = (OS_EVENT *)0;

        }

    }

    return (pevent);                                       (9)

}

Listing 11.2 Deleting a message queue. 
OS_EVENT  *OSQDel (OS_EVENT *pevent, INT8U opt, INT8U *err)

{

#if OS_CRITICAL_METHOD == 3  

    OS_CPU_SR  cpu_sr;

Listing 11.1 Creating a message queue. (Continued)
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#endif    

    BOOLEAN    tasks_waiting;

    OS_Q      *pq;

    if (OSIntNesting > 0) {                                                  (1)

        *err = OS_ERR_DEL_ISR;

        return ((OS_EVENT *)0);

    }

#if OS_ARG_CHK_EN > 0

    if (pevent == (OS_EVENT *)0) {                                           (2)

        *err = OS_ERR_PEVENT_NULL;

        return (pevent);

    }

    if (pevent->OSEventType != OS_EVENT_TYPE_Q) {                            (3)

        *err = OS_ERR_EVENT_TYPE;

        return (pevent);

    }

#endif

    OS_ENTER_CRITICAL();

    if (pevent->OSEventGrp != 0x00) {                                        (4)

        tasks_waiting = TRUE;                              

    } else {

        tasks_waiting = FALSE;                             

    }

    switch (opt) {

        case OS_DEL_NO_PEND:                               

             if (tasks_waiting == FALSE) {

                 pq                  = pevent->OSEventPtr;                   (5)

                 pq->OSQPtr          = OSQFreeList;

                 OSQFreeList         = pq;

                 pevent->OSEventType = OS_EVENT_TYPE_UNUSED;                 (6)

                 pevent->OSEventPtr  = OSEventFreeList;                      (7)

                 OSEventFreeList     = pevent;             

                 OS_EXIT_CRITICAL();

                 *err = OS_NO_ERR;

                 return ((OS_EVENT *)0);                                     (8)

Listing 11.2 Deleting a message queue. (Continued)
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L11.2(1) OSQDel() starts by making sure that this function is not called from an ISR because that’s not
allowed.

L11.2(2) 

L11.2(3) If OS_ARG_CHK_EN (see OS_CFG.H) is set to 1, OSQDel() validates pevent to ensure that it’s
not a NULL pointer and that it points to an ECB that was created as a queue.

L11.2(4) OSQDel() then determines whether any tasks are waiting on the queue. The flag tasks_waiting
is set accordingly.

Based on the option (i.e., opt) specified in the call, OSQDel() either deletes the queue
only if no tasks are pending on the queue (opt == OS_DEL_NO_PEND) or deletes the queue
even if tasks are waiting (opt == OS_DEL_ALWAYS).

             } else {

                 OS_EXIT_CRITICAL();

                 *err = OS_ERR_TASK_WAITING;

                 return (pevent);

             }

        case OS_DEL_ALWAYS: 

             while (pevent->OSEventGrp != 0x00) {                            (9)

                 OS_EventTaskRdy(pevent, (void *)0, OS_STAT_Q);             (10)

             }

             pq                  = pevent->OSEventPtr;                      (11)

             pq->OSQPtr          = OSQFreeList;

             OSQFreeList         = pq;

             pevent->OSEventType = OS_EVENT_TYPE_UNUSED;                    (12)

             pevent->OSEventPtr  = OSEventFreeList;                         (13)

             OSEventFreeList     = pevent;   

             OS_EXIT_CRITICAL();

             if (tasks_waiting == TRUE) {    

                 OS_Sched();                                                (14)

             }

             *err = OS_NO_ERR;

             return ((OS_EVENT *)0);                                        (15)

        default:

             OS_EXIT_CRITICAL();

             *err = OS_ERR_INVALID_OPT;

             return (pevent);

    }

}

Listing 11.2 Deleting a message queue. (Continued)
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L11.2(5) When opt is set to OS_DEL_NO_PEND and no task is waiting on the queue, OSQDel() starts by
returning the queue control block to the free list.

L11.2(6)

L11.2(7) OSQDel() then marks the ECB as unused, and the ECB is returned to the free list of ECBs.
This process allows another message queue (or any other ECB-based object) to be created.

L11.2(8) You should note that OSQDel() returns a NULL pointer because, at this point, the queue should
no longer be accessed through the original pointer. You should call OSQDel() as follows

QPtr = OSQDel(QPtr, opt, &err);

OSQDel() returns an error code if any tasks are waiting on the queue (i.e., OS_ERR_TASK_WAITING)
because by specifying OS_DEL_NO_PEND you indicated that you didn’t want to delete the queue if
tasks are waiting on the queue.

L11.2(9)

L11.2(10) When opt is set to OS_DEL_ALWAYS, then all tasks waiting on the queue are readied. Each task
thinks it received a message when in fact no message has been sent. The task should examine
the pointer returned to it to make sure it’s non-NULL. Also, you should note that interrupts are
disabled while each task is being readied. This feature, of course, increases the interrupt
latency of your system.

L11.2(11) OSQDel() then returns the queue control block to the free list.

L11.2(12)

L11.2(13) After all pending tasks are readied, OSQDel() marks the ECB as unused, and the ECB is
returned to the free list of ECBs.

L11.2(14) The scheduler is called only if tasks were waiting on the queue.

L11.2(15) Again, you should note that OSQDel() returns a NULL pointer because, at this point, the queue
should no longer be accessed through the original pointer.

11.02 Waiting for a Message at a Queue (Blocking), 
OSQPend()

The code to wait for a message to arrive at a queue is shown in Listing 11.3.  

Listing 11.3 Waiting for a message to arrive at a queue. 
void  *OSQPend (OS_EVENT *pevent, INT16U timeout, INT8U *err)

{

#if OS_CRITICAL_METHOD == 3                      

    OS_CPU_SR  cpu_sr;

#endif    

    void      *msg;

    OS_Q      *pq;
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    if (OSIntNesting > 0) {                                                  (1)

        *err = OS_ERR_PEND_ISR;                  

        return ((void *)0);

    }

#if OS_ARG_CHK_EN > 0

    if (pevent == (OS_EVENT *)0) {                                           (2)

        *err = OS_ERR_PEVENT_NULL;

        return ((void *)0);

    }

    if (pevent->OSEventType != OS_EVENT_TYPE_Q) {                            (3)

        *err = OS_ERR_EVENT_TYPE;

        return ((void *)0);

    }

#endif

    OS_ENTER_CRITICAL();

    pq = (OS_Q *)pevent->OSEventPtr;             

    if (pq->OSQEntries > 0) {                                                (4)

        msg = *pq->OSQOut++;                                                 (5)

        pq->OSQEntries--;                                                    (6)

        if (pq->OSQOut == pq->OSQEnd) {                                      (7)

            pq->OSQOut = pq->OSQStart;                                       (8)

        }

        OS_EXIT_CRITICAL();

        *err = OS_NO_ERR;

        return (msg);                                                        (9)

    }

    OSTCBCur->OSTCBStat |= OS_STAT_Q;                                       (10)

    OSTCBCur->OSTCBDly   = timeout;                                         (11)

    OS_EventTaskWait(pevent);                                               (12)

    OS_EXIT_CRITICAL();

    OS_Sched();                                                             (13)

    OS_ENTER_CRITICAL();

    msg = OSTCBCur->OSTCBMsg;                                               (14)

Listing 11.3 Waiting for a message to arrive at a queue. (Continued)
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L11.3(1) It doesn’t make sense to call OSQPend() from an ISR because an ISR cannot be made to wait.
Instead, you should call OSQAccept() (see Section 11.06, “Getting a Message Without Wait-
ing, OSQAccept()”).

L11.3(2)

L11.3(3) If OS_ARG_CHK_EN (see OS_CFG.H) is set to 1, OSQPend() verifies that pevent is not a NULL
pointer and that the ECB to which pevent is pointing has been created by OSQCreate().

L11.3(4)

L11.3(5) A message is available when .OSQEntries is greater than 0. In this case, OSQPend() gets the
message to which the .OSQOut field of the queue control block is pointing, stores the pointer
to the message in msg, and moves the .OSQOut pointer so that it points to the next entry in the
queue.

L11.3(6) OSQPend() then decrements the number of entries left in the queue because the previous
operation consumed the entry (i.e., removed the oldest message).

L11.3(7)

L11.3(8) Because a message queue is a circular buffer, OSQPend() needs to check that .OSQOut has
not moved past the last valid entry in the array. When this event happens, however, .OSQOut
is adjusted to point back to the beginning of the array.

L11.3(9) The message extracted from the queue is then returned to the caller of OSQPend(). This path
is what you are looking for when calling OSQPend(). It also happens to be the fastest path.

If the message queue is empty, the calling task needs to be put to sleep until another task (or an ISR)
sends a message through the queue (see Section 11.04, “Sending a Message to a Queue (LIFO),
OSQPostFront()”). OSQPend() allows you to specify a timeout value (specified in integral number of
ticks) as one of its arguments (i.e., timeout). This feature is useful to avoid waiting indefinitely for a
message to arrive at the queue. If the timeout value is nonzero, OSQPend() suspends the task until the
queue receives a message or the specified timeout period expires. Note that a timeout value of 0
indicates that the task is willing to wait forever for a message to arrive.

    if (msg != (void *)0) {                      

        OSTCBCur->OSTCBMsg      = (void *)0;                                (15)

        OSTCBCur->OSTCBStat     = OS_STAT_RDY;

        OSTCBCur->OSTCBEventPtr = (OS_EVENT *)0; 

        OS_EXIT_CRITICAL();

        *err                    = OS_NO_ERR;

        return (msg);                            

    }

    OS_EventTO(pevent);                                                     (16)

    OS_EXIT_CRITICAL();

    *err = OS_TIMEOUT;                           

    return ((void *)0);                                                     (17)

}

Listing 11.3 Waiting for a message to arrive at a queue. (Continued)
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L11.3(10) To put the calling task to sleep, OSQPend() sets the status flag in the task’s TCB to indicate
that the task is suspended waiting for a queue.

L11.3(11) The timeout is also stored in the TCB so that it can be decremented by OSTimeTick(). You
should recall (see Section 3.11, “Clock Tick”) that OSTimeTick() decrements each of the
created task’s .OSTCBDly field if it’s nonzero.

L11.3(12) The actual work of putting the task to sleep is done by OS_EventTaskWait() [see Section
6.06, “Making a Task Wait for an Event, OS_EventTaskWait()”].

L11.3(13) Because the calling task is no longer ready to run, the scheduler is called to run the next high-
est priority task that is ready to run. As far as your task is concerned, it made a call to
OSQPend(), and it doesn’t know that it is suspended until a message arrives. When the queue
receives a message (or the timeout period expires), OSQPend() resumes execution immedi-
ately after the call to OS_Sched().

L11.3(14) When OS_Sched() returns, OSQPend() checks to see if a message has been placed in the
task’s TCB by OSQPost().

L11.3(15) If so, the call is successful, and the message is returned to the caller. 

L11.3(16) If a message is not received, then OS_Sched() must have returned because of a timeout. The
calling task is then removed from the queue wait list by calling OS_EventTO().

L11.3(17) Note that the returned pointer is set to NULL because no message is available to return. The
calling task should either examine the contents of the return pointer or the return code to
determine whether a valid message has been received.

11.03 Sending a Message to a Queue (FIFO), 
OSQPost()

The code to deposit a message in a queue is shown in Listing 11.4. 

Listing 11.4 Depositing a message in a queue (FIFO), 
OSQPost(). 

INT8U  OSQPost (OS_EVENT *pevent, void *msg)

{

#if OS_CRITICAL_METHOD == 3                      

    OS_CPU_SR  cpu_sr;

#endif    

    OS_Q      *pq;

#if OS_ARG_CHK_EN > 0

    if (pevent == (OS_EVENT *)0) {                                           (1)

        return (OS_ERR_PEVENT_NULL);

    }
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L11.4(1)

L11.4(2)

L11.4(3) If OS_ARG_CHK_EN is set to 1 in OS_CFG.H, OSQPost() checks to see that pevent is not a NULL
pointer, that the message being posted is also not a NULL pointer, and finally checks to make
sure that the ECB is a queue.

L11.4(4) OSQPost() then checks to see if any task is waiting for a message to arrive at the queue.
Tasks are waiting when the .OSEventGrp field in the ECB contains a nonzero value.

L11.4(5) The highest priority task waiting for the message is removed from the wait list by OS_EventTaskRdy()
[see Section 6.05, “Making a Task Ready, OS_EventTaskRdy()”], and this task is made
ready to run.

    if (msg == (void *)0) {                                                  (2)

        return (OS_ERR_POST_NULL_PTR);

    }

    if (pevent->OSEventType != OS_EVENT_TYPE_Q) {                            (3)

        return (OS_ERR_EVENT_TYPE);

    }

#endif

    OS_ENTER_CRITICAL();

    if (pevent->OSEventGrp != 0x00) {                                        (4)

        OS_EventTaskRdy(pevent, msg, OS_STAT_Q);                             (5)

        OS_EXIT_CRITICAL();

        OS_Sched();                                                          (6)

        return (OS_NO_ERR);

    }

    pq = (OS_Q *)pevent->OSEventPtr;                  

    if (pq->OSQEntries >= pq->OSQSize) {                                     (7)

        OS_EXIT_CRITICAL();

        return (OS_Q_FULL);

    }

    *pq->OSQIn++ = msg;                                                      (8)

    pq->OSQEntries++;                                                        (9)

    if (pq->OSQIn == pq->OSQEnd) {                                          (10)

        pq->OSQIn = pq->OSQStart;

    }

    OS_EXIT_CRITICAL();

    return (OS_NO_ERR);

}

Listing 11.4 Depositing a message in a queue (FIFO), 
OSQPost(). (Continued)
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L11.4(6) OS_Sched() is then called to see if the task made ready is now the highest priority task ready
to run. If it is, a context switch results [only if OSQPost() is called from a task], and the read-
ied task is executed. If the readied task is not the highest priority task, OS_Sched() returns,
and the task that called OSQPost() continues execution.

L11.4(7) If no task is waiting for a message, the message to post needs to be placed in the queue. In
this case, OSQPost() makes sure that there is still room in the queue. An error code is
returned if an attempt is made to add a message to an already full queue.

L11.4(8)

L11.4(9) If no tasks are waiting for a message to arrive at the queue and the queue is not already full,
then the message to post is inserted in the next free location (FIFO), and the number of
entries in the queue is incremented.

L11.4(10) Finally, OSQPost() adjusts the circular-buffer pointer to prepare for the next post.

Note that a context switch does not occur if OSQPost() is called by an ISR because context switch-
ing from an ISR only occurs when OSIntExit() is called at the completion of the ISR and from the last
nested ISR (see Section 3.10, “Interrupts Under µC/OS-II”).

11.04 Sending a Message to a Queue (LIFO), 
OSQPostFront()

OSQPostFront() is basically identical to OSQPost(), except that OSQPostFront() uses .OSQOut
instead of .OSQIn as the pointer to the next entry to insert.  The code is shown in Listing 11.5.  

Listing 11.5 Depositing a message in a queue (LIFO), 
OSQPostFront(). 

INT8U  OSQPostFront (OS_EVENT *pevent, void *msg)

{

#if OS_CRITICAL_METHOD == 3                      

    OS_CPU_SR  cpu_sr;

#endif    

    OS_Q      *pq;

#if OS_ARG_CHK_EN > 0

    if (pevent == (OS_EVENT *)0) {               

        return (OS_ERR_PEVENT_NULL);

    }

    if (msg == (void *)0) {         

        return (OS_ERR_POST_NULL_PTR);

    }

    if (pevent->OSEventType != OS_EVENT_TYPE_Q) {     

        return (OS_ERR_EVENT_TYPE);
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L11.5(1)

L11.5(2) You should note that .OSQOut points to an already inserted entry, so .OSQOut must be made
to point to the previous entry. If .OSQOut points at the beginning of the array, then a decre-
ment really means positioning .OSQOut at the end of the array.

L11.5(3) However, .OSQEnd points to one entry past the array, and thus .OSQOut needs to be adjusted
to be within range. OSQPostFront() implements a LIFO queue because the next message
extracted by OSQPend() is the last message inserted by OSQPostFront().

11.05 Sending a Message to a Queue (FIFO or LIFO), 
OSQPostOpt()

You can also post a message to a queue using an alternate and more flexible function called
OSQPostOpt(). There are three post calls for backwards compatibility with previous versions of
µC/OS-II. OSQPostOpt() is the newer function and can replace both OSQPost() and OSQPostFront()

    }

#endif

    OS_ENTER_CRITICAL();

    if (pevent->OSEventGrp != 0x00) {                 

        OS_EventTaskRdy(pevent, msg, OS_STAT_Q);      

        OS_EXIT_CRITICAL();

        OS_Sched();                                   

        return (OS_NO_ERR);

    }

    pq = (OS_Q *)pevent->OSEventPtr;                  

    if (pq->OSQEntries >= pq->OSQSize) {              

        OS_EXIT_CRITICAL();

        return (OS_Q_FULL);

    }

    if (pq->OSQOut == pq->OSQStart) {                                        (1)

        pq->OSQOut = pq->OSQEnd;                                             (2)

    }

    pq->OSQOut--;                                                            (3)

    *pq->OSQOut = msg;                                

    pq->OSQEntries++;                                 

    OS_EXIT_CRITICAL();

    return (OS_NO_ERR);

}

Listing 11.5 Depositing a message in a queue (LIFO), 
OSQPostFront(). (Continued)
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with a single call. In addition, OSQPostOpt() allows posting a message to all tasks (i.e., broadcast)
waiting on the queue. The code to deposit a message in a queue is shown in Listing 11.6. 

Listing 11.6 Depositing a message in a queue
(Broadcast, FIFO, or LIFO),
OSQPostOpt(). 

INT8U  OSQPostOpt (OS_EVENT *pevent, void *msg, INT8U opt)

{

#if OS_CRITICAL_METHOD == 3 

    OS_CPU_SR  cpu_sr;

#endif    

    OS_Q      *pq;

#if OS_ARG_CHK_EN > 0

    if (pevent == (OS_EVENT *)0) {                                           (1)

        return (OS_ERR_PEVENT_NULL);

    }

    if (msg == (void *)0) {                                                  (2)

        return (OS_ERR_POST_NULL_PTR);

    }

    if (pevent->OSEventType != OS_EVENT_TYPE_Q) {                            (3)

        return (OS_ERR_EVENT_TYPE);

    }

#endif

    OS_ENTER_CRITICAL();

    if (pevent->OSEventGrp != 0x00) {                                        (4)

        if ((opt & OS_POST_OPT_BROADCAST) != 0x00) {                         (5)

            while (pevent->OSEventGrp != 0x00) {                             (6)

                OS_EventTaskRdy(pevent, msg, OS_STAT_Q);    

            }

        } else {

            OS_EventTaskRdy(pevent, msg, OS_STAT_Q);                         (7)

        }

        OS_EXIT_CRITICAL();

        OS_Sched();                                                          (8)

        return (OS_NO_ERR);

    }
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L11.6(1)

L11.6(2)

L11.6(3) If OS_ARG_CHK_EN is set to 1 in OS_CFG.H, OSQPostOpt() checks to see that pevent is not a
NULL pointer, checks that the message being posted is also not a NULL pointer, and finally
checks to make sure that the ECB is a queue.

L11.6(4) OSQPost() then checks to see if any task is waiting for a message to arrive at the queue.
Tasks are waiting when the .OSEventGrp field in the ECB contains a nonzero value. 

L11.6(5)

L11.6(6) If you set the OS_POST_OPT_BROADCAST bit in the opt argument, then all tasks waiting for a
message receive the message.  All tasks waiting for the message are removed from the wait list by
OS_EventTaskRdy() [see Section 6.05, “Making a Task Ready, OS_EventTaskRdy()”].
You should notice that interrupt-disable time is proportional to the number of tasks waiting
for a message from the queue.

L11.6(7) If a broadcast was not requested, then only the highest priority task waiting for a message is
made ready to run. The highest priority task waiting for the message is removed from the
wait list by OS_EventTaskRdy().

    pq = (OS_Q *)pevent->OSEventPtr;                  

    if (pq->OSQEntries >= pq->OSQSize) {                                     (9)

        OS_EXIT_CRITICAL();

        return (OS_Q_FULL);

    }

    if ((opt & OS_POST_OPT_FRONT) != 0x00) {                                (10)

        if (pq->OSQOut == pq->OSQStart) {                                   (11)

            pq->OSQOut = pq->OSQEnd;                  

        }

        pq->OSQOut--;

        *pq->OSQOut = msg;                            

    } else {                                          

        *pq->OSQIn++ = msg;                                                 (12)

        if (pq->OSQIn == pq->OSQEnd) {                

            pq->OSQIn = pq->OSQStart;

        }

    }

    pq->OSQEntries++;                                                       (13)

    OS_EXIT_CRITICAL();

    return (OS_NO_ERR);

}

Listing 11.6 Depositing a message in a queue
(Broadcast, FIFO, or LIFO),
OSQPostOpt(). (Continued)
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L11.6(8) OS_Sched() is then called to see if a task made ready is now the highest priority task ready to
run. If it is, a context switch results [only if OSQPostOpt() is called from a task], and the
readied task is executed. If the readied task is not the highest priority task, OS_Sched()
returns, and the task that called OSQPostOpt() continues execution. 

L11.6(9) If no task is waiting for a message, the message to post needs to be placed in the queue. In
this case, OSQPostOpt() makes sure that room is still available in the queue. An error code
would be returned if an attempt is made to add a message to an already full queue.

L11.6(10) OSQPostOpt() then checks the opt argument to see if the calling task desires to post the mes-
sage in FIFO or LIFO (setting opt to OS_POST_OPT_FRONT) order.

L11.6(11) If LIFO order is selected, OSQPostOpt() emulates OSQPostFront().

L11.6(12) If FIFO order, OSQPostOpt() emulates OSQPost().

L11.6(13) In either case, the number of entries in the queue is incremented.

Note that a context switch does not occur if OSQPostOpt() is called by an ISR because context
switching from an ISR only occurs when OSIntExit() is called at the completion of the ISR and from
the last nested ISR (see Section 3.10, “Interrupts Under µC/OS-II”).

11.06 Getting a Message Without Waiting, 
OSQAccept()

You can obtain a message from a queue without putting a task to sleep by calling OSQAccept() if the
queue is empty. The code for this function is shown in Listing 11.7.

Listing 11.7 Getting a message without waiting (non-blocking), 
OSQAccept(). 

void  *OSQAccept (OS_EVENT *pevent)

{

#if OS_CRITICAL_METHOD == 3                      

    OS_CPU_SR  cpu_sr;

#endif    

    void      *msg;

    OS_Q      *pq;

#if OS_ARG_CHK_EN > 0

    if (pevent == (OS_EVENT *)0) {                                           (1)

        return ((void *)0);

    }

    if (pevent->OSEventType != OS_EVENT_TYPE_Q) {                            (2)

        return ((void *)0);

    }
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L11.7(1)

L11.7(2) If OS_ARG_CHK_EN is set to 1 in OS_CFG.H, OSQAccept() starts by checking that pevent is
not a NULL pointer and that the ECB to which pevent is pointing has been created by
OSQCreate().

L11.7(3) OSQAccept() then checks to see if any entries are in the queue by looking at the
.OSQEntries queue control block field.

L11.7(4)

L11.7(5) If a message is available, the oldest message (FIFO) is retrieved from the queue and copied to
the local pointer msg, and the number of entries in the queue is decreased by one to reflect the
extraction.

L11.7(6) OSQAccept() then adjusts the circular queue pointer by moving the .OSQOut pointer to the
next entry.

L11.7(7) If no entries are in the queue, the local pointer is set to NULL.

The code that calls OSQAccept() needs to examine the returned value. If OSQAccept() returns a
NULL pointer, then a message was not available. You don’t want your application to dereference a NULL
pointer because, by convention, a NULL pointer is invalid. A non-NULL pointer indicates that a message
pointer is available. An ISR can use OSQAccept().

#endif

    OS_ENTER_CRITICAL();

    pq = (OS_Q *)pevent->OSEventPtr;             

    if (pq->OSQEntries > 0) {                                                (3)

        msg = *pq->OSQOut++;                                                 (4)

        pq->OSQEntries--;                                                    (5)

        if (pq->OSQOut == pq->OSQEnd) {                                      (6)

            pq->OSQOut = pq->OSQStart;

        }

    } else {

        msg = (void *)0;                                                     (7)

    }

    OS_EXIT_CRITICAL();

    return (msg);                                

}

Listing 11.7 Getting a message without waiting (non-blocking), 
OSQAccept(). (Continued)
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11.07 Flushing a Queue, OSQFlush()
OSQFlush() allows you to remove all the messages posted to a queue and basically start with a fresh
queue. The code for this function is shown in Listing 11.8.

L11.8(1)

L11.8(2) If OS_ARG_CHK_EN is set to 1 in OS_CFG.H, OSQFlush() starts by checking that pevent is not
a NULL pointer and that the ECB to which pevent is pointing has been created by
OSQCreate().

L11.8(3) The IN and OUT pointers are reset to the beginning of the array, and the number of entries is
cleared. I decided not to check to see if any tasks were pending on the queue because it is
irrelevant anyway and takes more processing time. In other words, if tasks are waiting on the
queue, then .OSQEntries is already set to 0. The only difference is that .OSQIn and .OSQOut
might be pointing elsewhere in the array. There is also no need to fill the queue with NULL
pointers.

Listing 11.8 Flushing the contents of a queue. 
INT8U  OSQFlush (OS_EVENT *pevent)

{

#if OS_CRITICAL_METHOD == 3                           

    OS_CPU_SR  cpu_sr;

#endif    

    OS_Q      *pq;

#if OS_ARG_CHK_EN > 0

    if (pevent == (OS_EVENT *)0) {                                           (1)

        return (OS_ERR_PEVENT_NULL);

    }

    if (pevent->OSEventType != OS_EVENT_TYPE_Q) {                            (2)

        return (OS_ERR_EVENT_TYPE);

    }

#endif

    OS_ENTER_CRITICAL();

    pq             = (OS_Q *)pevent->OSEventPtr;                             (3)

    pq->OSQIn      = pq->OSQStart;

    pq->OSQOut     = pq->OSQStart;

    pq->OSQEntries = 0;

    OS_EXIT_CRITICAL();

    return (OS_NO_ERR);

}



268 Chapter 11: Message Queue Management
11.08 Obtaining the Status of a Queue, OSQQuery()
OSQQuery() allows your application to take a snapshot of the contents of a message queue.  The code
for this function is shown in Listing 11.9. OSQQuery() is passed two arguments: pevent contains a
pointer to the message queue, which is returned by OSQCreate() when the queue is created; and pdata
is a pointer to a data structure (OS_Q_DATA, see uCOS_II.H) that holds information about the message
queue. Your application thus needs to allocate a variable of type OS_Q_DATA that can receive the infor-
mation about the desired queue. OS_Q_DATA contains the following fields:

.OSMsg contains the contents to which .OSQOut points if entries are in the queue. If the queue is
empty, .OSMsg will contains a NULL pointer.

.OSNMsgs contains the number of messages in the queue (i.e., a copy of .OSQEntries).

.OSQSize contains the size of the queue (in number of entries).

.OSEventTbl[] 

.OSEventGrp contains a snapshot of the message queue wait list. The caller to OSQQuery() can thus
determine how many tasks are waiting for the queue.

Listing 11.9 Obtaining the status of a queue. 
INT8U  OSQQuery (OS_EVENT *pevent, OS_Q_DATA *pdata)

{

#if OS_CRITICAL_METHOD == 3                      

    OS_CPU_SR  cpu_sr;

#endif    

    OS_Q      *pq;

    INT8U     *psrc;

    INT8U     *pdest;

#if OS_ARG_CHK_EN > 0

    if (pevent == (OS_EVENT *)0) {                                           (1)

        return (OS_ERR_PEVENT_NULL);

    }

    if (pevent->OSEventType != OS_EVENT_TYPE_Q) {                            (2)

        return (OS_ERR_EVENT_TYPE);

    }

#endif

    OS_ENTER_CRITICAL();

    pdata->OSEventGrp = pevent->OSEventGrp;                                  (3)

    psrc              = &pevent->OSEventTbl[0];

    pdest             = &pdata->OSEventTbl[0];

#if OS_EVENT_TBL_SIZE > 0

    *pdest++          = *psrc++;

#endif
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#if OS_EVENT_TBL_SIZE > 1

    *pdest++          = *psrc++;

#endif

#if OS_EVENT_TBL_SIZE > 2

    *pdest++          = *psrc++;

#endif

#if OS_EVENT_TBL_SIZE > 3

    *pdest++          = *psrc++;

#endif

#if OS_EVENT_TBL_SIZE > 4

    *pdest++          = *psrc++;

#endif

#if OS_EVENT_TBL_SIZE > 5

    *pdest++          = *psrc++;

#endif

#if OS_EVENT_TBL_SIZE > 6

    *pdest++          = *psrc++;

#endif

#if OS_EVENT_TBL_SIZE > 7

    *pdest            = *psrc;

#endif

    pq = (OS_Q *)pevent->OSEventPtr;

    if (pq->OSQEntries > 0) {                                                (4)

        pdata->OSMsg = *pq->OSQOut;                   

    } else {

        pdata->OSMsg = (void *)0;

    }

    pdata->OSNMsgs = pq->OSQEntries;                                         (5)

    pdata->OSQSize = pq->OSQSize;                                            (6)

    OS_EXIT_CRITICAL();

    return (OS_NO_ERR);

}

Listing 11.9 Obtaining the status of a queue. (Continued)
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L11.9(1)

L11.9(2) As always, if OS_ARG_CHK_EN is set to 1, OSQQuery() checks that pevent is not a NULL
pointer and that it points to an ECB containing a queue.

L11.9(3) OSQQuery() then copies the wait list. You should note that I decided to do the copy as in-line
code instead of using a loop for performance reasons.

L11.9(4) If the queue is not empty, the oldest message is extracted (but not removed) from the queue
and copied to .OSMsg. In other words, OSQQuery() does not move the .OSQOut pointer. If no
messages are in the queue, the .OSMsg contains a NULL pointer.

L11.9(5)

L11.9(6) Finally, the current number of entries and the queue size are placed in the .OSNMsgs and
.OSQSize fields of the OS_Q_DATA structure, respectively.

11.09 Using a Message Queue When Reading Analog 
Inputs

It is often useful in control applications to read analog inputs at regular intervals. To accomplish this
task, create a task, called OSTimeDly() [see Section 5.00, “Delaying a Task, OSTimeDly()”] and spec-
ify the desired sampling period. 

As shown in Listing 11.5, you could use a message queue instead and have your task pend on the
queue with a timeout. The timeout corresponds to the desired sampling period. If no other task sends a
message to the queue, the task is resumed after the specified timeout, which basically emulates the
OSTimeDly() function.

You are probably wondering why I decided to use a queue when OSTimeDly() does the trick just
fine. By adding a queue, you can have other tasks abort the wait by sending a message, thus forcing an
immediate conversion. If you add some intelligence to your messages, you can tell the analog to digital
converter (ADC) task to convert a specific channel, tell the task to increase the sampling rate, and more.
In other words, you can say to the task: “Can you convert analog input 3 for me now?” After servicing
the message, the task initiates the pend on the queue, which restarts the scanning process.
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Figure 11.5 Reading analog inputs.

11.10 Using a Queue as a Counting Semaphore
A message queue can be used as a counting semaphore by initializing and loading a queue with as many
non-NULL pointers [(void *)1 works well] as resources are available. A task requesting the semaphore
calls OSQPend() and releases the semaphore by calling OSQPost(). Listing 11.10 shows how this pro-
cess works. You can use this technique to conserve code space if your application only needs counting
semaphores and message queues (you then have no need for the semaphore services). In this case, set
OS_SEM_EN to 0 and only use queues instead of both queues and semaphores. Note that this technique
consumes a pointer-sized variable for each resource that the semaphore is guarding and requires a queue
control block. In other words, you are sacrificing data space (i.e. RAM) in order to save code space.
Also, message queue services are slower than semaphore services. This technique is very inefficient if
your counting semaphore (in this case, a queue) is guarding a large amount of resources (because you
would need a large array of pointers).
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TaskADCMUX

Timeout

OSQPend()
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Listing 11.10 Using a queue as a counting semaphore. 
OS_EVENT *QSem;

void     *QMsgTbl[N_RESOURCES]

void main (void)

{

    OSInit();

    .

    .

    QSem = OSQCreate(&QMsgTbl[0], N_RESOURCES);

    for (i = 0; i < N_RESOURCES; i++) {

        OSQPost(QSem, (void *)1);

    }

    .

    .

    OSTaskCreate(Task1, .., .., ..);

    .

    .

    OSStart();

}

void Task1 (void *pdata)

{

    INT8U err;

    for (;;) {

        OSQPend(&QSem, 0, &err);     /* Obtain access to resource(s)   */

        .

        .    /* Task has semaphore, access resource(s)                 */

        .

        OSMQPost(QSem, (void*)1);    /* Release access to resource(s)  */

    }

}
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Chapter 12

Memory Management
Your application can allocate and free dynamic memory using any ANSI C compiler’s malloc() and
free() functions, respectively. However, using malloc() and free() in an embedded real-time system
is dangerous because, eventually, you might not be able to obtain a single contiguous memory area due
to fragmentation. Fragmentation is the development of a large number of separate free areas (i.e., the
total free memory is fragmented into small, non-contiguous pieces). Execution time of malloc() and
free() are also generally nondeterministic because of the algorithms used to locate a contiguous block
of free memory.

µC/OS-II provides an alternative to malloc() and free() by allowing your application to obtain
fixed-sized memory blocks from a partition made of a contiguous memory area, as illustrated in Figure
12.1. All memory blocks are the same size, and the partition contains an integral number of blocks.
Allocation and deallocation of these memory blocks is done in constant time and is deterministic.

As shown in Figure 12.2, more than one memory partition can exist, so your application can obtain
memory blocks of different sizes. However, a specific memory block must be returned to the partition
from which it came. This type of memory management is not subject to fragmentation.

To enable µC/OS-II memory management services, you must set configuration constants in
OS_CFG.H. Specifically, Table 12.1 shows which services are compiled based on the value of con-
figuration constants found in OS_CFG.H. You should note that none of the memory management
services are enabled when OS_MEM_EN is set to 0. To enable specific features (i.e. service) listed in
Table 12.1, simply set the configuration constant to 1. You will notice that OSMemCreate(),
OSMemGet() and OSMemPut() cannot be individually disabled like the other services. That’s
because they are always needed when you enable µC/OS-II memory management.
 273
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12.00 Memory Control Blocks
µC/OS-II keeps track of memory partitions through the use of a data structure called a memory control
block (Listing 12.1).  Each memory partition requires its own memory control block.

.OSMemAddr is a pointer to the beginning (base) of the memory partition from which memory blocks
are allocated. This field is initialized when you create a partition [see Section 12.01, “Creating a
Partition, OSMemCreate()”] and is not used thereafter.

.OSMemFreeList is a pointer used by µC/OS-II to point either to the next free memory control block
or to the next free memory block. The use depends on whether the memory partition has been created or
not (see Section 12.01, “Creating a Partition, OSMemCreate()”).

.OSMemBlkSize determines the size of each memory block in the partition and is a parameter you
specify when the memory partition is created (see Section 12.01, “Creating a Partition,
OSMemCreate()”).

.OSMemNBlks establishes the total number of memory blocks available from the partition. This
parameter is specified when the partition is created (see Section 12.01, “Creating a Partition,
OSMemCreate()”).

.OSMemNFree is used to determine how many memory blocks are available from the partition.

Table 12.1 Memory management configuration constants 
in OS_CFG.H.

µC/OS-II Memory Service Enabled when set to 1 in OS_CFG.H
OSMemCreate()

OSMemGet()

OSMemPut()

OSMemQuery() OS_MEM_QUERY_EN

Listing 12.1 Memory control block data structure.
typedef struct {

    void   *OSMemAddr;

    void   *OSMemFreeList;

    INT32U  OSMemBlkSize;

    INT32U  OSMemNBlks;

    INT32U  OSMemNFree;

} OS_MEM;
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Figure 12.1 Memory partition.

Figure 12.2 Multiple memory partitions.

µC/OS-II initializes the memory manager if you configure OS_MEM_EN to 1 in OS_CFG.H. Initializa-
tion is done by OS_MemInit() [called by OSInit()] and consists of creating a linked list of memory
control blocks, as shown in Figure 12.3. You specify the maximum number of memory partitions with
the configuration constant OS_MAX_MEM_PART (see OS_CFG.H), which must be set at least to 2.

As you can see, the OSMemFreeList field of the control block is used to chain the free control
blocks.

Partition

Block

Start address

Partition #1 Partition #2 Partition #3 Partition #4
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Figure 12.3 List of free memory control blocks.

12.01 Creating a Partition, OSMemCreate()
Your application must create each partition before it can be used and is this done by calling
OSMemCreate(). Listing 12.2 shows how you could create a memory partition containing 100 blocks
of 32 bytes each.

The code to create a memory partition is shown in Listing 12.3. OSMemCreate() requires four argu-
ments: the beginning address of the memory partition, the number of blocks to be allocated from this
partition, the size (in bytes) of each block, and a pointer to a variable that contains an error code.
OSMemCreate() returns a NULL pointer if OSMemCreate() fails. On success, OSMemCreate() returns a

Listing 12.2 Creating a memory partition.
OS_MEM *CommTxBuf;

INT8U   CommTxPart[100][32];

void main (void)

{

    INT8U err;

    OSInit();

    .

    .

    CommTxBuf = OSMemCreate(CommTxPart, 100, 32, &err);

    .

    .

    OSStart();

}
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pointer to the allocated memory control block. This pointer must be used in subsequent calls to memory
management services [see OSMemGet(), OSMemPut(), and OSMemQuery() in Sections 12.02–12.04].

Listing 12.3 OSMemCreate() .
OS_MEM  *OSMemCreate (void *addr, INT32U nblks, INT32U blksize, INT8U *err)

{

#if OS_CRITICAL_METHOD == 3                         

    OS_CPU_SR  cpu_sr;

#endif    

    OS_MEM    *pmem;

    INT8U     *pblk;

    void     **plink;

    INT32U     i;

#if OS_ARG_CHK_EN > 0

    if (addr == (void *)0) {                                                 (1)

        *err = OS_MEM_INVALID_ADDR;

        return ((OS_MEM *)0);

    }

    if (nblks < 2) {                                                         (2)

        *err = OS_MEM_INVALID_BLKS;

        return ((OS_MEM *)0);

    }

    if (blksize < sizeof(void *)) {                                          (3)

        *err = OS_MEM_INVALID_SIZE;

        return ((OS_MEM *)0);

    }

#endif

    OS_ENTER_CRITICAL();

    pmem = OSMemFreeList;                                                    (4)

    if (OSMemFreeList != (OS_MEM *)0) {               

        OSMemFreeList = (OS_MEM *)OSMemFreeList->OSMemFreeList;

    }

    OS_EXIT_CRITICAL();

    if (pmem == (OS_MEM *)0) {                                               (5)

        *err = OS_MEM_INVALID_PART;

        return ((OS_MEM *)0);

    }

    plink = (void **)addr;                                                   (6)

    pblk  = (INT8U *)addr + blksize;
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L12.3(1) You must pass a valid pointer to the memory allocated that will be used as a partition. 

L12.3(2) Each memory partition must contain at least two memory blocks. 

L12.3(3) Each memory block must be able to hold the size of a pointer because a pointer is used to
chain all the memory blocks together. 

L12.3(4) Next, OSMemCreate() obtains a memory control block from the list of free memory control
blocks. The memory control block contains run-time information about the memory parti-
tion.

L12.3(5) OSMemCreate() cannot create a memory partition unless a memory control block is avail-
able.

L12.3(6) If a memory control block is available and all the previous conditions are satisfied, the mem-
ory blocks within the partition are linked together in a singly linked list.  A singly linked list
is used because insertion and removal of elements in the list is always done from the top of
the list.

L12.3(7) When all the blocks are linked, the memory control block is filled with information about the
partition.

L12.3(8)  OSMemCreate() returns the pointer to the memory control block, so it can be used in subse-
quent calls to access the memory blocks from this partition.

Figure 12.4 shows how the data structures look when OSMemCreate() completes successfully. Note
that the memory blocks are shown linked one after the other. At run time, as you allocate and deallocate
memory blocks, the blocks will most likely not be in the same order.

    for (i = 0; i < (nblks - 1); i++) {

        *plink = (void *)pblk;

        plink  = (void **)pblk;

        pblk   = pblk + blksize;

    }

    *plink              = (void *)0;

    pmem->OSMemAddr     = addr;                                              (7)

    pmem->OSMemFreeList = addr;

    pmem->OSMemNFree    = nblks;

    pmem->OSMemNBlks    = nblks;

    pmem->OSMemBlkSize  = blksize;

    *err                = OS_NO_ERR;

    return (pmem);                                                           (8)

}

Listing 12.3 OSMemCreate() (Continued).
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Figure 12.4 Memory partition created by OSMemCreate().

12.02 Obtaining a Memory Block, OSMemGet()
Your application can get a memory block from one of the created memory partitions by calling
OSMemGet(). You must use the pointer returned by OSMemCreate() in the call to OSMemGet() to specify
from which partition the memory block will come. Obviously, your application needs to know how big
the memory block obtained is, so that it doesn’t exceed its storage capacity. In other words, you must
not use more memory than is available from the memory block. For example, if a partition contains
32-byte blocks, then your application can use up to 32 bytes. When you are done using the block, you
must return it to the proper memory partition [see Section 12.03, “Returning a Memory Block,
OSMemPut()”]. Listing 12.4 shows the code for OSMemGet().

Listing 12.4 OSMemGet(). 

void  *OSMemGet (OS_MEM *pmem, INT8U *err)                                   (1)

{

#if OS_CRITICAL_METHOD == 3                           

    OS_CPU_SR  cpu_sr;

#endif    

    void      *pblk;

0

OSMemAddr    = addr

OSMemFreeList= addr

OSMemBlkSize = blksize

OSMemNBlks   = nblks

OSMemNFree   = nblks

Contiguous memory

pmem

OSMemCreate() arguments
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L12.4(1) The pointer passed to OSMemGet() specifies the partition from which you want to get a mem-
ory block.

L12.4(2) If you enabled argument checking (i.e., OS_ARG_CHK_EN is set to 1 in OS_CFG.H), then
OSMemGet() makes sure that you didn’t pass a NULL pointer instead of a pointer to a partition.
Unfortunately, OSMemGet() doesn’t know whether a non-NULL is actually pointing to a valid
partition (pmem could point to anything).

L12.4(3) OSMemGet() checks to see if free blocks are available.

L12.4(4) If a block is available, it is removed from the free list.

L12.4(5)

L12.4(6) The free list is then updated so that it points to the next free memory block, and the number
of blocks is decremented, indicating that the block has been allocated.

L12.4(7) The pointer to the allocated block is finally returned to your application.

Note that you can call this function from an ISR because, if a memory block is not available, there is
no waiting and the ISR simply receives a NULL pointer.

12.03 Returning a Memory Block, OSMemPut()
When your application is done with a memory block, it must be returned to the appropriate partition.
This operation is accomplished by calling OSMemPut(). You should note that OSMemPut() has no way of
knowing whether the memory block returned to the partition belongs to that partition. In other words, if

#if OS_ARG_CHK_EN > 0

    if (pmem == (OS_MEM *)0) {                                               (2)

        *err = OS_MEM_INVALID_PMEM;

        return ((OS_MEM *)0);

    }

#endif

    OS_ENTER_CRITICAL();

    if (pmem->OSMemNFree > 0) {                                              (3)

        pblk                = pmem->OSMemFreeList;                           (4)

        pmem->OSMemFreeList = *(void **)pblk;                                (5)

        pmem->OSMemNFree--;                                                  (6)

        OS_EXIT_CRITICAL();

        *err = OS_NO_ERR;                             

        return (pblk);                                                       (7)

    }

    OS_EXIT_CRITICAL();

    *err = OS_MEM_NO_FREE_BLKS;                       

    return ((void *)0);                               

}

Listing 12.4 OSMemGet(). (Continued)



Returning a Memory Block, OSMemPut()  281

12
you allocate a memory block from a partition containing blocks of 32 bytes, then you should not return
this block to a memory partition containing blocks of 120 bytes. The next time an application requests a
block from the 120-byte partition, it will only get 32 valid bytes; the remaining 88 bytes might belong to
some other task(s). This issue could certainly make your system crash.

Listing 12.5 shows the code for OSMemPut().

L12.5(1) You pass to OSMemPut() the address of the memory control block (pmem) to which the mem-
ory block belongs (pblk).

L12.5(2) OSMemPut() then checks that the pointers being passed to the function are non-NULL.  Unfor-
tunately, OSMemPut() doesn’t know whether the block returned actually belongs to the parti-
tion.  It is assumed that your application is returning the block to its proper place.

L12.5(3) Next, we check to see that the memory partition is not already full. This situation would cer-
tainly indicate that something went wrong during the allocation/deallocation process.
Indeed, you are returning a block to a partition that thinks it has all of its blocks already
returned to it.

Listing 12.5 OSMemPut(). 
INT8U  OSMemPut (OS_MEM  *pmem, void *pblk)                                  (1)

{

#if OS_CRITICAL_METHOD == 3

    OS_CPU_SR  cpu_sr;

#endif    

    

    

#if OS_ARG_CHK_EN > 0

    if (pmem == (OS_MEM *)0) {                                               (2)

        return (OS_MEM_INVALID_PMEM);

    }

    if (pblk == (void *)0) {

        return (OS_MEM_INVALID_PBLK);

    }

#endif

    OS_ENTER_CRITICAL();

    if (pmem->OSMemNFree >= pmem->OSMemNBlks) {                              (3)

        OS_EXIT_CRITICAL();

        return (OS_MEM_FULL);

    }

    *(void **)pblk      = pmem->OSMemFreeList;                               (4)

    pmem->OSMemFreeList = pblk;

    pmem->OSMemNFree++;                                                      (5)

    OS_EXIT_CRITICAL();

    return (OS_NO_ERR);

}
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L12.5(4) If the memory partition can accept another memory block, it is inserted into the linked list of
free blocks. 

L12.5(5) Finally, the number of memory blocks in the memory partition is incremented.

12.04 Obtaining Status of a Memory Partition, 
OSMemQuery()

OSMemQuery() is used to obtain information about a memory partition. For example, your application
can determine how many memory blocks are free, how many memory blocks have been used (i.e., allo-
cated), and the size of each memory block (in bytes). This information is placed in a data structure
called OS_MEM_DATA, as shown in Listing 12.6. The code for OSMemQuery() is shown in Listing 12.7.

Listing 12.6 Data structure used to obtain status from a partition. 
typedef struct {

    void  *OSAddr;     /* Points to beginning address of memory partition     */

    void  *OSFreeList; /* Points to beginning of free list of memory blocks   */

    INT32U OSBlkSize;  /* Size (in bytes) of each memory block                */

    INT32U OSNBlks;    /* Total number of blocks in the partition             */

    INT32U OSNFree;    /* Number of memory blocks free                        */

    INT32U OSNUsed;    /* Number of memory blocks used                        */

} OS_MEM_DATA;

Listing 12.7 OSMemQuery().

INT8U  OSMemQuery (OS_MEM *pmem, OS_MEM_DATA *pdata)

{

#if OS_CRITICAL_METHOD == 3                      

    OS_CPU_SR  cpu_sr;

#endif    

    

    

#if OS_ARG_CHK_EN > 0

    if (pmem == (OS_MEM *)0) {                                               (1)

        return (OS_MEM_INVALID_PMEM);

    }

    if (pdata == (OS_MEM_DATA *)0) {             

        return (OS_MEM_INVALID_PDATA);

    }

#endif

    OS_ENTER_CRITICAL();

    pdata->OSAddr     = pmem->OSMemAddr;                                     (2)

    pdata->OSFreeList = pmem->OSMemFreeList;
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L12.7(1) As usual, we start off by checking the arguments passed to the function.

L12.7(2) All the fields found in OS_MEM are copied to the OS_MEM_DATA data structure with interrupts
disabled. This process ensures that the fields are not altered until they are all copied.

L12.7(3) You should also notice that computation of the number of blocks used is performed outside
of the critical section because it’s done using the local copy of the data.

12.05 Using Memory Partitions
Figure 12.5 shows an example of how you can use the dynamic memory allocation feature of µC/OS-II,
as well as its message-passing capability (see Chapter 11, "Message Queue Management"). Also, refer
to Listing 12.9 for the pseudocode of the two tasks shown. The numbers in parentheses in Figure 12.5
correspond to the appropriate action in Listing 12.9.

Figure 12.5 Using dynamic memory allocation. 

    pdata->OSBlkSize  = pmem->OSMemBlkSize;

    pdata->OSNBlks    = pmem->OSMemNBlks;

    pdata->OSNFree    = pmem->OSMemNFree;

    OS_EXIT_CRITICAL();

    pdata->OSNUsed    = pdata->OSNBlks - pdata->OSNFree;                     (3)

    return (OS_NO_ERR);

}

Listing 12.7 OSMemQuery().
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The first task reads and checks the value of analog inputs (pressures, temperatures, and voltages) and
sends a message to the second task if any of the analog inputs exceed a threshold. The message sent
contains a time stamp, information about which channel had the error, an error code, an indication of the
severity of the error, and any other information you can think of.

Error handling in this example is centralized. This means that other tasks, or even ISRs, can post
error messages to the error-handling task. The error-handling task can be responsible for displaying
error messages on a monitor (a display), logging errors to a disk, or dispatching other tasks that could
take corrective actions based on the error.

Listing 12.8 Scanning analog inputs and reporting
errors. 

AnalogInputTask()

{

    for (;;) {

        for (all analog inputs to read) {

            Read analog input;                                               (1)

            if (analog input exceeds threshold) {

                Get memory block;                                            (2)

                Get current system time (in clock ticks);                    (3)

                Store the following items in the memory block.               (4)

                    System time (i.e. a time stamp);

                    The channel that exceeded the threshold;

                    An error code;

                    The severity of the error;

                    Etc.

                Post the error message to error queue;                       (5)

                    (A pointer to the memory block containing the data)

            }

        }

        Delay task until it’s time to sample analog inputs again;

    }

}

ErrorHandlerTask()

{

    for (;;) {

        Wait for message from error queue;                                   (6)

            (Gets a pointer to a memory block containing information

             about the error reported)
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12.06 Waiting for Memory Blocks from a Partition
Sometimes it’s useful to have a task wait for a memory block in case a partition runs out of blocks.
µC/OS-II doesn’t support pending on partitions, but you can support this requirement by adding a
counting semaphore (see Chapter 7, “Semaphore Management”) to guard the memory partition. To
obtain a memory block, simply obtain a semaphore and then call OSMemGet(). To release a block, sim-
ply return the block to its partition and post to the semaphore. The whole process is shown in Listing
12.9.

        Read the message and take action based on error reported;            (7)

        Return the memory block to the memory partition;                     (8)

    }

}

Listing 12.9 Waiting for memory blocks from a partition. 
OS_EVENT  *SemaphorePtr;                                                     (1)

OS_MEM    *PartitionPtr;

INT8U      Partition[100][32];

OS_STK     TaskStk[1000];

void main (void)

{

    INT8U err;

    OSInit();                                                                (2)

    .

    .

    SemaphorePtr = OSSemCreate(100);                                         (3)

    PartitionPtr = OSMemCreate(Partition, 100, 32, &err);                    (4)

    .

    OSTaskCreate(Task, (void *)0, &TaskStk[999], &err);                      (5)

    .

    OSStart();                                                               (6)

}

void Task (void *pdata)

{

    INT8U  err;

Listing 12.8 Scanning analog inputs and reporting
errors. (Continued)
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L12.9(1) First, declare your system objects. Note that I used hard-coded constants for clarity. You
would certainly create #define constants in a real application.

L12.9(2)

L12.9(3) Initialize µC/OS-II by calling OSInit() and then create a semaphore with an initial count
corresponding to the number of blocks in the partition.

L12.9(4) Next, create the partition and one of the tasks that will be accessing the partition.

L12.9(5) By now, you should be able to figure out what you need to do to add the other tasks. It obvi-
ously does not make much sense to use a semaphore if only one task is using memory blocks
— there is no need to ensure mutual exclusion! In fact, it doesn’t even make sense to use par-
titions unless you intend to share memory blocks with other tasks. 

L12.9(6) Multitasking is then started by calling OSStart().

L12.9(7)

L12.9(8) When the task executes, it obtains a memory block only if a semaphore is available. After the
semaphore is available, the memory block is obtained. There is no need to check for an error
code from OSSemPend() because the only way µC/OS-II can return to this task is if a memory
block is released because a timeout of 0 is specified. Also, you don’t need the error code from
OSMemGet() for the same reason — you must have at least one block in the partition in order
for the task to resume.

L12.9(9)

L12.9(10) When the task is finished with a memory block, the task simply returns the memory block to
the partition and signals the semaphore.

    INT8U *pblock;

    for (;;) {

        OSSemPend(SemaphorePtr, 0, &err);                                    (7)

        pblock = OSMemGet(PartitionPtr, &err);                               (8)

        .

        .  /* Use the memory block */

        .

        OSMemPut(PartitionPtr, pblock);                                      (9)

        OSSemPost(SemaphorePtr);                                            (10)

    }

}

Listing 12.9 Waiting for memory blocks from a partition. (Continued)
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Chapter 13

Porting µC/OS-II
This chapter describes in general terms what needs to be done to adapt µC/OS-II to different processors.
Adapting a real-time kernel to a microprocessor or a microcontroller is called a port. Most of µC/OS-II
is written in C for portability; however, it is still necessary to write some processor-specific code in C
and assembly language. Specifically, µC/OS-II manipulates processor registers, which can only be done
through assembly language. Porting µC/OS-II to different processors is relatively easy because
µC/OS-II was designed to be portable. If you already have a port for the processor you are intending to
use, you don’t need to read this chapter, unless of course you want to know how µC/OS-II proces-
sor-specific code works.

A processor can run µC/OS-II if the processor satisfies the following general requirements:

1. The processor has a C compiler that generates reentrant code.

2. The processor supports interrupts and can provide an interrupt that occurs at regular intervals (typi-
cally between 10 and 100Hz).

3. Interrupts can be disabled and enabled from C.

4. The processor supports a hardware stack that can accommodate a fair amount of data (possibly 
many kilobytes).

5. The processor has instructions to load and store the stack pointer and other CPU registers, either on 
the stack or in memory.

Processors, such as the Motorola 6805 series, do not satisfy requirements 4 and 5, so µC/OS-II can-
not run on such processors.

Figure 13.1 shows the µC/OS-II architecture and its relationship with the hardware. When you use
µC/OS-II in an application, you are responsible for providing the application software and the µC/OS-II
configuration sections. This book and companion CD contains all the source code for the proces-
sor-independent code section, as well as the processor-specific code section for the Intel 80x86, real
mode, large model. If you intend to use µC/OS-II on a different processor, you need either to obtain a
copy of a port for the processor you intend to use or to write one yourself if the desired processor port
has not already been ported. Check the official µC/OS-II Web site at www.uCOS-II.com for a list of
available ports.  In fact, you might want to look at other ports and learn from the experience of others.
 287
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Figure 13.1 µC/OS-II hardware/software architecture.

Porting µC/OS-II is actually quite straightforward after you understand the subtleties of the target
processor and the C compiler you are using. Depending on the processor, a port can consist of writing or
changing between 50 and 300 lines of code and could take anywhere from a few hours to about a week
to accomplish. The easiest thing to do, however, is to modify an existing port from a processor that is
similar to the one you intend to use. Table 13.1 summarizes the code you must write or modify.  I
decided to add a column that indicates the relative complexity involved: 1 means easy, 2 means average,
and 3 means more complicated.

OS_CFG.H  
INCLUDES.H

µC/OS-II
(Processor-Independent Code)

µC/OS-II Port
(Processor-Specific Code)

µC/OS-II Configuration
(Application-Specific)

Application Software
(Your Code!)

OS_CORE.C
OS_FLAG.C
OS_MBOX.C
OS_MEM.C

OS_MUTEX.C
OS_Q.C

OS_SEM.C 
OS_TASK.C
OS_TIME.C
uCOS_II.C
uCOS_II.H

OS_CPU.H
OS_CPU_A.ASM
OS_CPU_C.C

CPU Timer

Software

Hardware
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13.00 Development Tools
As previously stated, because µC/OS-II is written mostly in ANSI C, you need an ANSI C compiler for
the processor you intend to use. Also, because µC/OS-II is a preemptive kernel, you should only use a C
compiler that generates reentrant code. 

Table 13.1 Port summary. 

Name Type File
C or 
Assembly?

Complexity

BOOLEAN Data Type OS_CPU.H C 1

INT8U Data Type OS_CPU.H C 1

INT8S Data Type OS_CPU.H C 1

INT16U Data Type OS_CPU.H C 1

INT16S Data Type OS_CPU.H C 1

INT32U Data Type OS_CPU.H C 1

INT32S Data Type OS_CPU.H C 1

FP32 Data Type OS_CPU.H C 1

FP64 Data Type OS_CPU.H C 1

OS_STK Data Type OS_CPU.H C 2

OS_CPU_SR Data Type OS_CPU.H C 2

OS_CRITICAL_METHOD #define OS_CPU.H C 3

OS_STK_GROWTH #define OS_CPU.H C 1

OS_ENTER_CRITICAL() Macro OS_CPU.H C 3

OS_EXIT_CRITICAL() Macro OS_CPU.H C 3

OSStartHighRdy() Function OS_CPU_A.ASM Assembly 2

OSCtxSw() Function OS_CPU_A.ASM Assembly 3

OSIntCtxSw() Function OS_CPU_A.ASM Assembly 3

OSTickISR() Function OS_CPU_A.ASM Assembly 3

OSTaskStkInit() Function OS_CPU_C.C C 3

OSInitHookBegin() Function OS_CPU_C.C C 1

OSInitHookEnd() Function OS_CPU_C.C C 1

OSTaskCreateHook() Function OS_CPU_C.C C 1

OSTaskDelHook() Function OS_CPU_C.C C 1

OSTaskSwHook() Function OS_CPU_C.C C 1

OSTaskStatHook() Function OS_CPU_C.C C 1

OSTCBInitHook() Function OS_CPU_C.C C 1

OSTimeTickHook() Function OS_CPU_C.C C 1

OSTaskIdleHook() Function OS_CPU_C.C C 1
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Your tools should also include an assembler because some of the port requires saving and restoring
CPU registers that are generally not accessible from C.  However, some C compilers do have extensions
that allow you to manipulate CPU registers directly from C or allow you to write in-line assembly lan-
guage statements.

Most C compilers designed for embedded systems also include a linker and a locator. The linker is
used to combine object files (compiled and assembled files) from different modules, while the locator
allows you to place the code and data anywhere in the memory map of the target processor. 

Your C compiler must also provide a mechanism to disable and enable interrupts from C. Some
compilers allow you to insert in-line assembly language statements into your C source code, which
makes it easy to insert the proper processor instructions to enable and disable interrupts. Other compil-
ers actually contain language extensions to enable and disable interrupts directly from C.

13.01 Directories and Files
The installation program provided on the companion CD installs µC/OS-II and the port for the Intel
80x86 (real mode, large model) on your hard drive. I devised a consistent directory structure that allows
you to find the files for the desired target processor easily. If you add a port for another processor, you
should consider following the same conventions.

All ports should be placed under \SOFTWARE\uCOS-II on your hard drive. You should note that I
don’t specify on which disk drive these files should reside; I leave this decision up to you. The
source code for each microprocessor or microcontroller port must be found in either two or three
files: OS_CPU.H, OS_CPU_C.C, and, optionally, OS_CPU_A.ASM. The assembly language file is optional
because some compilers allow you to have in-line assembly language, so you can place the needed
assembly language code directly in OS_CPU_C.C. The directory in which the port is located deter-
mines which processor you are using. Examples of directories where different ports are stored are
shown in the Table 13.2. Note that each directory contains the same filenames, even though they have
totally different targets. Also, the directory structure accounts for different C compilers. For exam-
ple, the µC/OS-II port files for the Paradigm C (see www.DevTools.com) compiler should be placed
in a Paradigm sub-directory. Similarly, the port files for the Borland C (see www.Borland.com) com-
piler v4.5 should be placed in a BC45 sub-directory. The port files for other processors, such as the
Motorola 68HC11 processor using a COSMIC compiler (see www.Cosmic-US.com), should be placed
as shown in Table 13.2.

Table 13.2 Examples of port directories. 

Intel/AMD 80186 \SOFTWARE\uCOS-II\Ix86L\PARADIGM

     \OS_CPU.H

     \OS_CPU_A.ASM

     \OS_CPU_C.C

\SOFTWARE\uCOS-II\Ix86L\BC45

     \OS_CPU.H

     \OS_CPU_A.ASM

     \OS_CPU_C.C
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13.02  INCLUDES.H
As mentioned in Chapter 1, INCLUDES.H is a master include file found at the top of all .C files

INCLUDES.H allows every .C file in your project to be written without concern about which header
file is actually needed. The only drawback to having a master include file is that INCLUDES.H can
include header files that are not pertinent to the actual .C file being compiled. Each file therefore will
require extra time to compile. This inconvenience is offset by code portability.  I assume that you have
an INCLUDES.H in each project that uses µC/OS-II.  You can edit the INCLUDES.H file that I provide and
add your own header files, but your header files should be added at the end of the list. INCLUDES.H is
not actually considered part of a port, but I decided to mention it here because every µC/OS-II file
assumes it.

13.03  OS_CPU.H
OS_CPU.H contains processor- and implementation-specific #define constants, macros, and typedefs.
The general layout of OS_CPU.H is shown in Listing 13.1.

Motorola 68HC11 \SOFTWARE\uCOS-II\68HC11\COSMIC

     \OS_CPU.H

     \OS_CPU_A.ASM

     \OS_CPU_C.C

#include "includes.h"

Listing 13.1 OS_CPU.H. 
/*

**********************************************************************************

*                                  DATA TYPES

*                             (Compiler Specific)

**********************************************************************************

*/

typedef unsigned char  BOOLEAN;                                                            (1)

typedef unsigned char  INT8U;       /* Unsigned  8 bit quantity           */

typedef signed   char  INT8S;       /* Signed    8 bit quantity           */

typedef unsigned int   INT16U;      /* Unsigned 16 bit quantity           */

typedef signed   int   INT16S;      /* Signed   16 bit quantity           */

typedef unsigned long  INT32U;      /* Unsigned 32 bit quantity           */

typedef signed   long  INT32S;      /* Signed   32 bit quantity           */

Table 13.2 Examples of port directories. (Continued)
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13.03.01 Compiler-Specific Data Types
Because different microprocessors have different word lengths, the port of µC/OS-II includes a series of
type definitions that ensures portability. Specifically, µC/OS-II code never makes use of C’s short,
int, and long data types because they are inherently nonportable.

To complete the data-type section, you need to consult your compiler documentation and find the
standard C data types that correspond to the types expected by µC/OS-II.

L13.1(1) I defined integer data types that are both portable and intuitive. The INT16U data type, for
example, always represents a 16-bit unsigned integer. µC/OS-II and your application code
can now assume that the range of values for variables declared with this type is from 0 to

typedef float          FP32;        /* Single precision floating point    */               (2)

typedef double         FP64;        /* Double precision floating point    */

typedef unsigned int   OS_STK;      /* Each stack entry is 16-bit wide    */               (3)

typedef unsigned short OS_CPU_SR;   /* Define size of CPU status register */               (4)

/* 

*********************************************************************************

*                             Processor Specifics

*********************************************************************************

*/

#define  OS_CRITICAL_METHOD   ??                                                           (5)

#if      OS_CRITICAL_METHOD == 1

#define  OS_ENTER_CRITICAL()  ????                                                         (6)

#define  OS_EXIT_CRITICAL()   ????

#endif

#if      OS_CRITICAL_METHOD == 2

#define  OS_ENTER_CRITICAL()  ????                                                         (7)

#define  OS_EXIT_CRITICAL()   ????

#endif

#if      OS_CRITICAL_METHOD == 3

#define  OS_ENTER_CRITICAL()  ????                                                         (8)

#define  OS_EXIT_CRITICAL()   ????

#endif

#define  OS_STK_GROWTH        1          /* Stack growth (0=Up, 1=Down) */                 (9)

#define  OS_TASK_SW()         ????                                                        (10)

Listing 13.1 OS_CPU.H. (Continued)
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65,535. A µC/OS-II port to a 32-bit processor means that an INT16U is actually declared as an
unsigned short instead of an unsigned int. Where µC/OS-II is concerned, however, it
still deals with an INT16U.  All you have to do is determine from your compiler documenta-
tion what combination of standard C data types map to the data types µC/OS-II expects.

L13.1(2) Also, for convenience, I have included floating-point data types even though µC/OS-II
doesn’t make use of floating-point numbers.

L13.1(3) You must tell µC/OS-II the data type of a task’s stack, which is done by declaring the
proper C data type for OS_STK. If stack elements on your processor are 32 bit, you can
declare OS_STK as

This example assumes that the declaration of INT32U precedes that of OS_STK.  When you
create a task and you declare a stack for this task, then you must always use OS_STK as its
data type.

L13.1(4) If you use OS_CRITICAL_METHOD #3 (see next section), you need to declare the data type for
the processor status word (PSW) .  The PSW is also called the processor flag or status regis-
ter.  If the PSW of your processor is 16-bit wide, simply declare it as   

13.03.02 OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL()
This section is similiar to Section 3.00, “Critical Sections, OS_ENTER_CRITICAL() and OS_EXIT_
CRITICAL(),” with some items removed and others added.  I decided to repeat this text here to avoid
having you flip back and forth between sections. µC/OS-II, like all real-time kernels, needs to disable
interrupts in order to access critical sections of code and to reenable interrupts when done. This ability
allows µC/OS-II to protect critical code from being entered simultaneously from either multiple tasks or
ISRs.

Processors generally provide instructions to disable/enable interrupts, and your C compiler must
have a mechanism to perform these operations directly from C. Some compilers allow you to insert
in-line assembly language statements into your C source code, which makes it quite easy to insert pro-
cessor instructions to enable and disable interrupts. Other compilers contain language extensions to
enable and disable interrupts directly from C. 

To hide the implementation method chosen by the compiler manufacturer, µC/OS-II defines two
macros to disable and enable interrupts: OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL(), respec-
tively [see L13.1(5) through L13.1(8)]. 

OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL() are always together to wrap critical sections of
code as shown in Listing 13.2.

typedef  INT32U  OS_STK;

typedef  INT16U  OS_CPU_SR;
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Your application can also use OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL() to protect your
own critical sections of code. Be careful, however, because your application will crash (i.e., hang) if you
disable interrupts before calling a service, such as OSTimeDly() (see Chapter 5). This problem happens
because the task is suspended until time expires, but because interrupts are disabled, you would never
service the tick interrupt! Obviously, all the PEND calls are also subject to this problem, so be careful. As
a general rule, you should always call µC/OS-II services with interrupts enabled!

OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL() can be implemented using three different meth-
ods.  You only need one of the three methods, even though I show OS_CPU.H (Listing 13.1) containing
three different methods.  The actual method used by your application depends on the capabilities of the
processor, as well as the compiler used.  The method used is selected by the #define constant
OS_CRITICAL_METHOD, which is defined in OS_CPU.H of the port you are using for your application (i.e.,
product).  The #define constant OS_CRITICAL_METHOD is necessary in OS_CPU.H because µC/OS-II
allocates a local variable called cpu_sr if OS_CRITICAL_METHOD is set to 3.

OS_CRITICAL_METHOD == 1

The first and simplest way to implement these two macros is to invoke the processor instruction to disable
interrupts for OS_ENTER_CRITICAL() and the enable interrupts instruction for OS_EXIT_CRITICAL().
However, there is a little problem with this scenario. If you call a µC/OS-II function with interrupts dis-
abled, on return from a µC/OS-II service (i.e., function), interrupts are enabled! If you had disabled
interrupts prior to calling µC/OS-II, you might want them to be disabled on return from the µC/OS-II
function. In this case, this implementation is not adequate.  However, with some processors/compilers,
this method is the only one you can use.  An example declaration is shown in Listing 13.3.  Here, I
assume that the compiler you are using provides you with two functions to disable and enable interrupts,
respectively.  The names disable_int() and enable_int() are arbitrarily chosen for sake of illustra-
tion.  You compiler can have different names for them.

OS_CRITICAL_METHOD == 2

The second way to implement OS_ENTER_CRITICAL() is to save the interrupt disable status onto the
stack and then disable interrupts. OS_EXIT_CRITICAL() is implemented by restoring the interrupt status

Listing 13.2 Use of critical section. 
{

    .

    .

    OS_ENTER_CRITICAL();

    /* µC/OS-II critical code section */

    OS_EXIT_CRITICAL();

    .

    .

}

Listing 13.3 Critical method #1.
#define  OS_ENTER_CRITICAL()  disable_int()     /* Disable interrupts             */

#define  OS_EXIT_CRITICAL()   enable_int()      /* Enable  interrupts             */
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from the stack. Using this scheme, if you call a µC/OS-II service with interrupts either enabled or dis-
abled, the status is preserved across the call. In other words, interrupts are enabled after the call if they
were enabled before the call, and interrupts are disabled after the call if they were disabled before the
call. Be careful when you call a µC/OS-II service with interrupts disabled because you are extending the
interrupt latency of your application. The pseudocode for these macros is shown in Listing 13.4.

Here, I’m assuming that your compiler allows you to execute in-line assembly language statements
directly from your C code, as shown in Listing 13.4 (thus the asm() pseudo-function).  You need to con-
sult your compiler documentation for this.

The PUSH PSW instruction pushes the ‘Processor Startus Word’, PSW (also known as the condition
code register or, processor flags) onto the stack.  The DI instruction stands for ‘Disable Interrupts’.
Finally, the POP PSW instruction is assumed to restore the original state of the interrupt flag from the
stack.  The instructions I used are only for illustration purposes and may not be actual processor instruc-
tions.

Some compilers do not optimize inline code real well and thus, this method may not work because
the compiler may not be ‘smart’ enough to know that the stack pointer was changed (by the PUSH
instruction).  Specifically, the processor you are using may provide a ‘stack pointer relative’ addressing
mode which the compiler can use to access local variables or function arguments using and offset from
the stack pointer.  Of course, if the stack pointer is changed by the OS_ENTER_CRITICAL() macro then
all these stack offsets may be wrong and would most likely lead to incorrect behavior.

OS_CRITICAL_METHOD == 3

Some compilers provide you with extensions that allow you to obtain the current value of the PSW and
save it into a local variable declared within a C function.  The variable can then be used to restore the
PSW, as shown in Listing 13.5.

Listing 13.4 Critical method #2.
#define OS_ENTER_CRITICAL()   \

       asm(“ PUSH    PSW”);   \

       asm(“ DI”);

#define OS_EXIT_CRITICAL()    \

       asm(“ POP     PSW”);

Listing 13.5 Saving and restoring the PSW. 
void Some_uCOS_II_Service (arguments)

{

   OS_CPU_SR  cpu_sr                                                          (1)

    .

    cpu_sr = get_processor_psw();                                             (2)

    disable_interrupts();                                                     (3)

    .

    /* Critical section of code */                                            (4)
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L13.5(1) OS_CPU_SR is a µC/OS-II data type that is declared in the processor-specific file OS_CPU.H.
When you select this critical section method, OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL()
always assume the presence of the cpu_sr variable.  In other words, if you use this method to
protect your own critical sections, you need to declare a cpu_sr variable in your function.
However, you do not need to declare this variable in any of the µC/OS-II functions because
that’s already done.

L13.5(2) To enter a critical section, a function provided by the compiler vendor is called to obtain the
current state of the PSW (condition code register, processor flags, or whatever else this regis-
ter is called for your processor). I called this function get_processor_psw() for sake of dis-
cussion, but it likely has a different name.

L13.5(3) Another compiler-provided function (disable_interrupt()) is called, of course, to disable
interrupts.

L13.5(4) At this point, the critical code can execute.

L13.5(5) After the critical section has completed, interrupts can be reenabled by calling another com-
piler-specific extension that, for sake of discussion, I call set_processor_psw().  The func-
tion receives as an argument the previous state of the PSW.  It’s assumed that this function
restores the processor PSW to this value.

Because I don’t know what the compiler functions are (there is no standard naming convention), the
µC/OS-II macros are used to encapsulate the functionality as shown  

13.03.03  OS_STK_GROWTH
The stack on most microprocessors and microcontrollers grows from high to low memory. However,
some processors work the other way around.

L13.1(9) µC/OS-II has been designed to be able to handle either flavor by specifying which way the
stack grows through the configuration constant OS_STK_GROWTH, as shown.

Set OS_STK_GROWTH to 0 for low-to-high memory stack growth.

Set OS_STK_GROWTH to 1 for high-to-low memory stack growth.

    .

    set_processor_psw(cpu_sr);                                                (5)

    .

}

Listing 13.6 Critical method #3.
#define OS_ENTER_CRITICAL()           \

        cpu_sr = get_processor_psw(); \

        disable_interrupts();

#define OS_EXIT_CRITICAL()            \

        set_processor_psw(cpu_sr);

Listing 13.5 Saving and restoring the PSW. (Continued)
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The reason this #define constant is provided is twofold.  First, OSInit() needs to know
where the top-of-stack is when it’s creating OS_TaskIdle() and OS_TaskStat().  Second,
if you call OSTaskStkChk(), µC/OS-II needs to know where the bottom-of-stack is

(high-memory or low-memory) in order to determine stack usage.

13.03.04  OS_TASK_SW()
L13.1(10) OS_TASK_SW() is a macro that is invoked when µC/OS-II switches from a low priority task to

the highest priority task. OS_TASK_SW() is always called from task-level code. Another mech-
anism, OSIntExit(), is used to perform a context switch when an ISR makes a higher prior-
ity task ready for execution. A context switch simply consists of saving the processor
registers on the stack of the task being suspended and restoring the registers of the higher pri-
ority task from its stack.

In µC/OS-II, the stack frame for a ready task always looks as if an interrupt has just occurred and all
processor registers are saved onto it. In other words, all that µC/OS-II has to do to run a ready task is to
restore all processor registers from the task’s stack and execute a return from interrupt. You thus need to
implement OS_TASK_SW() to simulate an interrupt. Most processors provide either software interrupt or
trap instructions to accomplish this task. The ISR or trap handler (also called the exception handler)
must vector to the assembly language function OSCtxSw() (see Section Section 13.04.02,
“OSTaskCreateHook(),”).

For example, a port for an Intel or AMD 80x86 processor uses an INT instruction, as shown in List-
ing 13.7.  The interrupt handler needs to vector to OSCtxSw(). You must determine how to do this with
your compiler/processor.

A port for the Motorola 68HC11 processor most likely uses the SWI instruction. Again, the SWI han-
dler is OSCtxSw(). Finally, a port for a Motorola 680x0/CPU32 processor probably uses one of the 16
TRAP instructions. Of course, the selected trap handler is none other than OSCtxSw().

Some processors, such as the Zilog Z80, do not provide a software interrupt mechanism. In this case,
you need to simulate the stack frame as closely to an interrupt stack frame as you can. OS_TASK_SW()
calls OSCtxSw() instead of vectoring to it. The Z80 is a processor that has been ported to µC/OS and is
thus portable to µC/OS-II.

13.04  OS_CPU_C.C
A µC/OS-II port requires that you write 10 fairly simple C functions:

OSTaskStkInit()
OSTaskCreateHook()
OSTaskDelHook()
OSTaskSwHook()
OSTaskIdleHook()
OSTaskStatHook()
OSTimeTickHook()
OSInitHookBegin()

Listing 13.7 Critical method #3.
#define  OS_TASK_SW()         asm  INT  080H



298 Chapter 13: Porting µC/OS-II
OSInitHookEnd()
OSTCBInitHook()

The only required function is OSTaskStkInit(). The other nine functions must be declared but do not
need to contain any code.  Function prototypes, as well as a reference manual, is provided at the end of
this chapter.

13.04.01  OSTaskStkInit()
This function is called by OSTaskCreate() and OSTaskCreateExt() to initialize the stack frame of a
task so that the stack looks as if an interrupt has just occurred and all the processor registers have been
pushed onto that stack.  The pseudocode for OSTaskStkInit() is shown in Listing 13.8.

Figure 13.2 shows what OSTaskStkInit() needs to put on the stack of the task being created. Note that
I assume a stack grows from high to low memory. The discussion that follows applies just as well for a
stack growing in the opposite direction.

Listing 13.9 shows the function prototypes for OSTaskCreate(), OSTaskCreateExt(), and
OSTaskStkInit().  The arguments in bold font are passed from the create calls to OSTaskStkInit().
When OSTaskCreate() calls OSTaskStkInit(), OSTaskCreate() sets the opt argument to 0x0000
because OSTaskCreate() doesn’t support additional options.  

Listing 13.8 Pseudocode for OSTaskStkInit(). 
OS_STK *OSTaskStkInit (void  (*task)(void *pd),

                       void   *pdata,

                       OS_STK *ptos,

                       INT16U  opt);

{

    Simulate call to function with an argument (i.e. pdata);                (1)

    Simulate ISR vector;                                                    (2)

    Setup stack frame to contain desired initial values of all registers;   (3)

    Return new top-of-stack pointer to caller;                              (4)

}

Listing 13.9 Function prototypes. 
INT8U  OSTaskCreate (void  (*task)(void *pd),

                     Void   *pdata,

                     OS_STK *ptos,

                     INT8U   prio)

INT8U  OSTaskCreateExt (void   (*task)(void *pd),

                        void    *pdata,

                        OS_STK  *ptos,

                        INT8U    prio,

                        INT16U   id,

                        OS_STK  *pbos,

                        INT32U   stk_size,

                        void    *pext,

                        INT16U   opt)



OS_CPU_C.C  299

13
Figure 13.2 Stack-frame initialization with pdata passed to the 
stack.

Recall that under µC/OS-II, a task is an infinite loop but otherwise looks just like any other C func-
tion. When the task is started by µC/OS-II, the task receives an argument just as if it were called by
another function, as shown in Listing 13.10.

If I were to call MyTask() from another function, the C compiler might push the argument onto the
stack followed by the return address of the function calling MyTask(). OSTaskStkInit() needs to
simulate this behavior. Some compilers actually pass pdata in one or more registers. I’ll discuss this
situation later.

OS_STK *OSTaskStkInit (void  (*task)(void *pd),

                       void   *pdata,

                       OS_STK *ptos,

                       INT16U  opt);

Listing 13.10 Task code.
void MyTask (void *pdata)

{

    /* Do something with argument 'pdata' */

    for (;;) {

        /* Task code                      */

    }

}

Listing 13.9 Function prototypes. (Continued)

Processor Status Word

Interrupt Return Address

LOW MEMORY

HIGH MEMORY

Stack Growth

Saved Processor Registers

pdata

Task Start Address

Stack Pointer

(1)

(3)

(4)

(5)

(2)
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F13.2(1)

L13.8(1) Assuming pdata is pushed onto the stack, OSTaskStkInit() simulates the scenario and
loads the stack accordingly.

F13.2(2)

L13.8(1) Unlike a C function call, the return address of the caller is unknown because the task was
never really called (we are just trying to set up the stack frame of a task, as if the code were
called). All OSTaskStkInit() knows about is the start address of the task (it’s passed as an
argument). It turns out that you really don’t need the return address because the task is not
supposed to return to another function anyway.

F13.2(3)

L13.8(2) At this point, OSTaskStkInit() needs to put the registers on the stack. The registers are
automatically pushed by the processor when the function recognizes and starts servicing an
interrupt. Some processors stack all of the registers; others stack just a few. Generally speak-
ing, a processor stacks at least the value of the program counter of the instruction to which to
return upon returning from an interrupt and the processor status word. Obviously, you must
match the order exactly.

F13.2(4)

L13.8(3) Next, OSTaskStkInit() needs to put the rest of the processor registers on the stack. The
stacking order depends on whether your processor gives you a choice or not. Some proces-
sors have one or more instructions that push many registers at once. You would have to emu-
late the stacking order of such instructions. For example, the Intel 80x86 has the PUSHA
instruction, which pushes eight registers onto the stack. On the Motorola 68HC11 processor,
all registers are automatically pushed onto the stack during an interrupt response, so you
would also need to match the stacking order.

F13.2(5)

L13.8(4) After you’ve initialized the stack, OSTaskStkInit() needs to return the address to where the
stack pointer points after the stacking is complete. OSTaskCreate() or OSTaskCreateExt()
takes this address and saves it in the task control block. The processor documentation tells
you whether the stack pointer should point to the next free location on the stack or the loca-
tion of the last stored value. For example, on an Intel 80x86 processor, the stack pointer
points to the last stored data, whereas on a Motorola 68HC11 processor, the stack pointer
points at the next free location.

Now it’s time to returns to the issue of what to do if your C compiler passes the pdata argument in
registers instead of on the stack.

F13.3(1) Similarly to the previous case, OSTaskStkInit() saves the task address onto the stack in
order to simulate a call to your task code.

F13.3(2) Again, OSTaskStkInit() needs to put the registers on the stack. The registers are automati-
cally pushed by the processor when the function recognizes and starts servicing an interrupt.
Some processors stack all of registers; others stack just a few. Generally speaking, a proces-
sor stacks at least the value of the program counter for the instruction to which to return upon
returning from an interrupt and the processor status word. Obviously, you must match the
order exactly.

F13.3(3) Next, OSTaskStkInit() needs to put the rest of the processor registers on the stack. The
stacking order depends on whether your processor gives you a choice or not. Some processors
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have one or more instructions that push many registers at once. You would have to emulate the
stacking order of such instructions. Because the compiler passed arguments to a function in
registers (at least some of them), you need to find out from the compiler documentation the
register in which pdata is stored. pdata is placed on the stack in the same area in which you
save the corresponding register.

F13.3(4) After you’ve initialized the stack, OSTaskStkInit() needs to return the address to which the
stack pointer points after the stacking is complete. OSTaskCreate() or OSTaskCreateExt()
takes this address and saves it in the task control block (OS_TCB). Again, the processor docu-
mentation tells you whether the stack pointer should point to the next free location on the
stack or the location of the last stored value.

Figure 13.3 Stack frame initialization with pdata passed in register. 

13.04.02  OSTaskCreateHook()
OSTaskCreateHook() is called by OS_TCBInit() whenever a task is created. This function allows you
or the user of your port to extend the functionality of µC/OS-II. OSTaskCreateHook() is called when
µC/OS-II is done setting up most of the OS_TCB but before the OS_TCB is linked to the active task chain
and before the task is made ready to run. Interrupts are enabled when this function is called.

When called, OSTaskCreateHook() receives a pointer to the OS_TCB of the task created and can thus
access all of the structure elements. OSTaskCreateHook() has limited capability when the task is cre-
ated with OSTaskCreate(). However, with OSTaskCreateExt(), you get access to a TCB extension
pointer (OSTCBExtPtr) in OS_TCB that can be used to access additional data about the task, such as the
contents of floating-point registers, Memory Management Unit (MMU) registers, task counters, and
debug information.  You might want to examine OS_TCBInit() to see exactly what’s being done. Chap-
ter 15 shows how you can use this function.

Processor Status Word

Interrupt Return Address

LOW MEMORY

HIGH MEMORY

Stack Growth

Saved Processor Registers

pdata

Task Start Address

Stack Pointer

(1)

(2)

(3)

(4)
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Note about OS_CPU_HOOKS_EN
The code for the hook functions (OS???Hook()) that are described in this and the following sec-
tions is generated from the file OS_CPU_C.C only if OS_CPU_HOOKS_EN is set to 1 in OS_CFG.H.
The OS???Hook() functions are always needed, and the #define constant OS_CPU_HOOKS_EN
doesn’t mean that the code will not be called.  All OS_CPU_HOOKS_EN means is that the hook func-
tions are in OS_CPU_C.C (when 1) or elsewhere, in another file (when 0). This feature allows the
user of your port to redefine all the hook functions in a different file. Obviously, users of your port
need access to the source to compile it with OS_CPU_HOOKS_EN set to 0 in order to prevent multi-
ply defined symbols at link time.  If you don’t need to use hook functions because you don’t
intend to extend the functionality of µC/OS-II through this mechanism, then you can leave the
function bodies empty.  Again, µC/OS-II always expects that the hook functions exist (i.e., they
must always be declared somewhere).

13.04.03  OSTaskDelHook()
OSTaskDelHook() is called by OSTaskDel() after removing the task from either the ready list or a wait
list (if the task was waiting for an event to occur). It is called before unlinking the task from µC/OS-II’s
internal linked list of active tasks. When called, OSTaskDelHook() receives a pointer to the OS_TCB of
the task being deleted and can access all structure members. OSTaskDelHook() can see if a TCB exten-
sion has been created (a non-NULL pointer) and is thus responsible for performing cleanup operations.
OSTaskDelHook() is called with interrupts disabled, which means that your OSTaskDelHook() can
affect interrupt latency if it’s too long.  You might want to study OSTaskDel() and see exactly what is
accomplished before calling OSTaskDelHook(). Chapter 15 shows how you can use this function.

13.04.04  OSTaskSwHook()
OSTaskSwHook() is called whenever a task switch occurs. The call happens whether the task switch is
performed by OSCtxSw() or OSIntCtxSw() (see Section 13.05, “OS_CPU_A.ASM,”).  OSTaskSwHook()
can access OSTCBCur and OSTCBHighRdy directly because they are global variables. OSTCBCur points to
the OS_TCB of the task being switched out, and OSTCBHighRdy points to the OS_TCB of the new task.
Note that interrupts are always disabled during the call to OSTaskSwHook(), so you should keep addi-
tional code to a minimum because additional code affects interrupt latency. OSTaskSwHook() has no
arguments and is not expected to return anything. Chapter 15 shows how you can use this function.

13.04.05  OSTaskStatHook()
OSTaskStatHook() is called once every second by OSTaskStat(). You can extend the statistics capabil-
ity with OSTaskStatHook(). For instance, you can keep track of and display the execution time of each
task, the percentage of the CPU used by each task, how often each task executes, and more.
OSTaskStatHook() has no arguments and is not expected to return anything.  You might want to exam-
ine OS_TaskStat(). Example #3 in Chapter 1 shows how you can use this function.
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13.04.06  OSTimeTickHook()
OSTaskTimeHook() is called by OSTimeTick() at every system tick. In fact, OSTimeTickHook() is
called before a tick is actually processed by µC/OS-II in order to give your port or application first claim
to the tick. OSTimeTickHook() has no arguments and is not expected to return anything.

13.04.07  OSTCBInitHook()
OSTCBInitHook() is called by OS_TCBInit() immediately before it calls OSTaskCreateHook(), which
is also called by OS_TCBInit().  I did this so that you could initialize OS_TCB-related data with
OSTCBInitHook() and task-related data with OSTaskCreateHook() (there can be a difference).  It’s up
to you to decide whether you need to populate both of these functions.  Like OSTaskCreateHook(),
OSTCBInitHook() receives a pointer to the newly created task’s OS_TCB after initializing most of the field
but before linking the OS_TCB to the chain of created tasks. You might want to examine OS_TCBInit().

13.04.08 OSTaskIdleHook()
Many microprocessors allow you to execute instructions that bring the CPU into a low-power mode.
The CPU exits low-power mode when it receives an interrupt.  OSTaskIdleHook() is called by
OS_TaskIdle() and, as shown in Listing 13.11, can be made to use this CPU feature.

Listing 13.11 Use of OSTaskIdleHook().
void  OS_TaskIdle (void *pdata)

{

#if OS_CRITICAL_METHOD == 3

    OS_CPU_SR  cpu_sr;

#endif

    pdata = pdata;

    for (;;) {

        OS_ENTER_CRITICAL();

        OSIdleCtr++;                                                          (1)

        OS_EXIT_CRITICAL();

        OSTaskIdleHook();                                                     (2)

    }

}

void  OSTaskIdleHook (void)

{

    asm(“ STOP”);                                                             (3)

    /* Interrupt received and serviced */                                     (4)

}



304 Chapter 13: Porting µC/OS-II
L13.11(1) As you know, OS_TaskIdle() is executed whenever no other task is ready to run.
OS_TaskIdle() increments the idle counter, OSIdleCtr.

L13.11(2) Next, OS_TaskIdle() calls the hook function OSTaskIdleHook() that you declare in the
port file OS_CPU_C.C.

L13.11(3) OSTaskIdleHook() immediately invokes the CPU instruction to bring the CPU into
low-power mode.  I assume, for sake of illustration, that your compiler supports in-line
assembly language and that the instruction to execute is called STOP.  Other compilers might
not allow you to do in-line assembly language and, in those cases, you could declare
OSTaskIdleHook() in the assembly language file OS_CPU_A.ASM but make sure you include
a return from the call.  Also, the instruction to bring the CPU into low-power mode can be
called something else.

L13.11(4) When an interrupt occurs, the CPU exits low-power mode and processes the ISR. The ISR
signals a higher priority task, which executes upon completion of the ISR because the ISR
calls OSIntExit().  When all tasks are again waiting for events to occur, µC/OS-II
switches back to the idle task immediately after item L13.9(4), OSTaskIdleHook() returns
to OS_TaskIdle(), and the same process repeats.

You could also use OSTaskIdleHook() to blink an LED, which could be used as an indi-
cation of how busy the CPU is.  A dim LED would indicate a very busy CPU, while a bright
LED indicates a lightly loaded CPU.

13.04.09  OSInitHookBegin()
OSInitHookBegin() is called immediately upon entering OSInit().  The reason I added this function
is to encapsulate OS-related initialization within OSInit().  This encapsulation allows you to extend
OSInit() with your own port-specific code.  The user of your port still only sees OSInit(), and the
code is cleaner.

13.04.10 OSInitHookEnd()
OSInitHookEnd() is similar to OSInitHookBegin(), except that the hook is called at the end of
OSInit() just before returning to OSInit()’s caller.  The reason is the same as above and you can see
an example of the use of OSInitHookEnd() in Chapter 15.

13.05 OS_CPU_A.ASM 
A µC/OS-II port requires that you write four assembly language functions:

OSStartHighRdy()
OSCtxSw()
OSIntCtxSw()
OSTickISR()

If your compiler supports in-line assembly language, you could actually place these functions in
OS_CPU_C.C, instead of having a separate assembly language file.
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13.05.01  OSStartHighRdy()
OSStartHighRdy() is called by OSStart() to start the highest priority task ready to run.  The
pseudocode for this function is shown in Listing 13.12.  You need to convert this pseudocode to assem-
bly language.

L13.12(1) OSStartHighRdy() must call OSTaskSwHook().  However, OSStartHighRdy() only does
half a context switch — you are only restoring the registers of the highest priority task and
not saving the register of a task. OSTaskSwHook() needs to examine OSRunning to tell
whether OSTaskSwHook() was called from OSStartHighRdy() (OSRunning is FALSE) or
from a regular context switch (OSRunning is TRUE).

L13.12(2) OSStartHighRdy() sets OSRunning to TRUE before the highest priority task is restored but
after calling OSTaskSwHook().

You should note that I should have placed the previous two statements in OSStart()
instead of requiring that you place them in OSStartHighRdy() because they don’t need to be
done in assembly language.  Unfortunately, I didn’t notice this fact when I first wrote
OSStart().  If I were to change OSStart() at this point, a large number of ports might not
work properly.  I have thus decided to leave these statements in OSStartHighRdy() in order
to avoid a lot of e-mail messages!

L13.12(3) OSStartHighRdy() then needs to load the stack pointer of the CPU with the top-of-stack
pointer of the highest priority task.  OSStartHighRdy() assumes that OSTCBHighRdy points
to the OS_TCB of the task with the highest priority. To simplify things, the stack pointer is
always stored at the beginning of the OS_TCB. In other words, the stack pointer of the task to
resume is always stored at offset 0 in the OS_TCB.

L13.12(4) In µC/OS-II, the stack frame for a ready task always looks as if an interrupt has just occurred
and all processor registers have been saved onto it. To run the highest priority task, all you
need to do is restore all processor registers from the task’s stack in the proper order and exe-
cute a return from interrupt.  In this step, OSStartHighRdy() retrieves the contents of all the
CPU registers from the stack.  It’s important to pop the registers in the reverse order from the
way they were placed onto the stack by OSTaskStkInit() (see Section 13.04.01,
“OSTaskStkInit(),”).

L13.12(5) The last step is to execute a return-from-interrupt instruction, which causes the CPU to
retrieve the program counter and possibly the CPU flags register (also called the status

Listing 13.12 Pseudocode for OSStartHighRdy().
void OSStartHighRdy (void)

{

    Call user definable OSTaskSwHook();                                      (1)

    OSRunning = TRUE;                                                        (2)
    Get the stack pointer of the task to resume:                             (3)

        Stack pointer = OSTCBHighRdy->OSTCBStkPtr;

    Restore all processor registers from the new task's stack;               (4)

    Execute a return from interrupt instruction;                             (5)

}
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register) from the stack.  This action causes the CPU to resume execution at the first
instruction of the highest priority task.

Remember that before you can call OSStart(), however, you must have created at least one of your
tasks [see OSTaskCreate() and OSTaskCreateExt()].

13.05.02  OSCtxSw()
A task-level context switch is accomplished by issuing a software-interrupt instruction or, depending on
the processor, executing a TRAP instruction. The interrupt service routine, trap, or exception handler
must vector to OSCtxSw().

The sequence of events that leads µC/OS-II to vector to OSCtxSw() begins when the current task
calls a service provided by µC/OS-II, which causes a higher priority task to be ready to run. At the
end of the service call, µC/OS-II calls OS_Sched(), which concludes that the current task is no
longer the most important task to run. OS_Sched() loads the address of the highest priority task
into OSTCBHighRdy and then executes the software interrupt or TRAP instruction by invoking the
macro OS_TASK_SW(). Note that the variable OSTCBCur already contains a pointer to the current
task’s, OS_TCB. The software interrupt instruction (or TRAP) forces some of the processor registers
(most likely the return address and the processor’s status word) onto the current task’s stack and
then the processor vectors to OSCtxSw().

The pseudocode for OSCtxSw() is shown in Listing 13.13. This code must be written in assembly
language because you cannot access CPU registers directly from C. Note that interrupts are disabled
during OSCtxSw() and also during execution of the user-definable function OSTaskSwHook().  When
OSCtxSw() is invoked, it is assumed that the processor’s program counter (PC) and possibly the flag reg-
ister (or status register) are pushed onto the stack by the software-interrupt instruction, which is invoked
by the OS_TASK_SW() macro.

L13.13(1) OSCtxSw() saves all the processor registers (except the ones already saved by the software
interrupt) in the same order in which OSTaskStkInit() placed them on the stack by.

Listing 13.13 Pseudocode for OSCtxSw(). 
void OSCtxSw(void)

{

    Save processor registers;                                                (1)

    Save the current task’s stack pointer into the current task’s OS_TCB:    (2)

        OSTCBCur->OSTCBStkPtr = Stack pointer;

    OSTaskSwHook();                                                          (3)

    OSTCBCur  = OSTCBHighRdy;                                                (4)

    OSPrioCur = OSPrioHighRdy;                                               (5)

    Get the stack pointer of the task to resume:                             (6)

        Stack pointer = OSTCBHighRdy->OSTCBStkPtr;

    Restore all processor registers from the new task’s stack;               (7)

    Execute a return from interrupt instruction;                             (8)

}



OS_CPU_A.ASM  307

13
L13.13(2) After all CPU registers are on the stack of the task to suspend, OSCtxSw() saves the stack
pointer into the task’s OS_TCB.

L13.13(3) OSCtxSw() calls OSTaskSwHook() in case your port needs to extend the functionality of a
context switch.  Note that OSTaskSwHook() is always called whether this function is declared
in OS_CPU_C.C or elsewhere.

L13.13(4) OSCtxSw() then needs to make the pointer to the current OS_TCB point to the OS_TCB of the
task being resumed.  In other words, the new task becomes the current task.

L13.13(5) OSCtxSw() needs to copy the new task’s priority into the current task priority.

L13.13(6) The new task’s stack pointer is then retrieved from the new task’s OS_TCB.

L13.13(7) OSCtxSw() then needs to restore the value of the CPU registers for the task that is being
resumed.  You must restore the registers in exactly the reverse order as they were saved.  For
example, if your processor has four registers called R1, R2, R3, and R4 and you saved them in
that order, then you must retrieve them starting from R4 and ending with R1.

L13.13(8) Because the value of the high priority task’s program counter (and possibly the status regis-
ter) are still on the stack, a return from interrupt causes the program counter and status regis-
ter to be popped off the stack and loaded into the CPU. This action causes your task code to
be resumed.

You can see an animation of a context switch for an Intel 80x86 CPU by visiting www.uCOS-II.com.

13.05.03  OSTickISR()
µC/OS-II requires you to provide a periodic time source to keep track of time delays and timeouts. A
tick should occur between 10 and 100 times per second, or Hertz. To provide an appropriate time
source, either dedicate a hardware timer or obtain 50/60Hz from an AC power line.

You must enable ticker interrupts after multitasking has started, that is, after calling OSStart().
Note that you really can’t do this because OSStart() never returns.  However, you can and should ini-
tialize and tick interrupts in the first task that executes following a call to OSStart().  This task is the
highest priority that you create before calling OSStart(). A common mistake is to enable ticker inter-
rupts between calling OSInit() and OSStart(), as shown in Listing 13.14.  This issue is a problem
because the tick interrupt could be serviced before µC/OS-II starts the first task and, at that point,
µC/OS-II is in an unknown state and your application can crash.

Listing 13.14 Incorrect place to start the tick interrupt.
void main(void)

{

    .

    .

    OSInit();               /* Initialize µC/OS-II                 */

    .

    .

    /* Application initialization code ...                         */

    /* ... Create at least on task by calling OSTaskCreate()       */

    .
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The pseudocode for the tick ISR is shown in Listing 13.15. This code must be written in assembly
language because you cannot access CPU registers directly from C.

L13.15(1) The tick ISR (as with any ISR) needs to save all the CPU registers onto the current task’s stack.
Of course, they need to be saved in the same order as they are placed in OSTaskStkInit().

L13.15(2) It is assumed that interrupts are disabled at this point so you can directly increment OSIntNesting
without fear of data corruption from another ISR. In the past, I recommended that you calle
OSIntEnter(), which handles the increment.  At the time, I wanted to encapsulate the incre-
ment in case I needed to do more processing at the beginning of the ISR. It turns out that I
added a boundary check in OSIntEnter() to ensure that interrupt nesting never exceeds 255
levels.  If don’t expect to nest this deep, you can increment OSIntNesting without this bound-
ary check.  If you want to be safe, simply call OSIntEnter().  However, calling OSIntEnter()
adds overhead to the ISR.  It’s up to you to decide which way you want to implement your
port.

L13.15(3) The tick ISR then needs to check the value of OSIntNesting, and, if it’s one, you need to
save the contents of the stack pointer into the current task’s OS_TCB.  This step has been
added in v2.51, and, although it complicates the ISR slightly, it does make a port more
compiler-independent.

    .

    Enable TICKER interrupts; /* DO NOT DO THIS HERE!!!            */
    .

    .

    OSStart();                /* Start multitasking                */

}

Listing 13.15 Pseudocode for tick ISR.
void OSTickISR(void)

{

   Save processor registers;                                                  (1)

   Call OSIntEnter() or increment OSIntNesting;                               (2)

   if (OSIntNesting == 1) {                                                   (3)

      OSTCBCur->OSTCBStkPtr = Stack Pointer;

   }

   Clear interrupting device;                                                 (4)

   Re-enable interrupts (optional);                                           (5)

   OSTimeTick();                                                              (6)

   OSIntExit();                                                               (7)

   Restore processor registers;                                               (8)

   Execute a return from interrupt instruction;                               (9)

}

Listing 13.14 Incorrect place to start the tick interrupt.



OS_CPU_A.ASM  309

13
L13.15(4) Depending on the source of the interrupt, the interrupting device might need to be cleared to
acknowledge the interrupt.

L13.15(5) You might want to re-enable interrupts at this point in order to allow higher priority interrupts
to be recognized.   This step is optional because you might not want to allow nested interrupts
because they consume stack space.

L13.15(6) OSTickISR() must call OSTimeTick(), which is responsible for maintaining µC/OS-II’s
internal timers.  The timers allow tasks to be suspended for a certain amount of time or allow
timeouts on PEND-type calls.

L13.15(7) Because we are done servicing this ISR, we need to call OSIntExit().  As you probably
remember, OSIntExit() determines whether a higher priority task has been made ready to
run because of this ISR.  If a higher priority task is ready to run, OSIntExit() does not
return to the interrupted task but instead performs context switch to this higher priority task.

L13.15(8) If there is no higher priority task, then OSIntExit() returns, and we simply restore the CPU
registers from the values stacked at the beginning of the ISR.  Again, the registers must be
restored in the reverse order.

L13.15(9) OSTickISR() needs to execute a return from interrupt in order to resume execution of the
interrupted task.

13.05.04  OSIntCtxSw()
OSIntCtxSw() is called by OSIntExit() to perform a context switch from an ISR. Because
OSIntCtxSw() is called from an ISR, we assume that all the processor registers are properly saved onto
the interrupted task’s stack (see Section 13.05.03, “OSTickISR(),”). 

The pseudocode for OSIntCtxSw() is shown in Listing 13.16. This code must be written in assem-
bly language because you cannot access CPU registers directly from C. If your C compiler supports
in-line assembly, put the code for OSIntCtxSw() in OS_CPU_C.C instead of OS_CPU_A.ASM. You should
note that this pseudocode is for v2.51 (and higher) because prior to v2.51, OSIntCtxSw() required a few
extra steps.  If you have a port that was done for a version prior to v2.51, I highly recommend that you
change it to match the algorithm shown in Listing 13.16.

A lot of the code is identical to OSCtxSw() except that we don’t save the CPU registers onto the cur-
rent task because that’s already done by the ISR.  In fact, you can reduce the amount of code in the port
by jumping to the appropriate section of code in OSCtxSw() if you want.  Because of the similarity
between OSCtxSw() and OSIntCtxSw(), after you figure out how to do OSCtxSw(), you have automati-
cally figured out how to do OSIntCtxSw()!

Listing 13.16 Pseudocode for OSIntCtxSw() for v2.51 
and higher. 

void OSIntCtxSw(void)

{

    Call user-definable OSTaskSwHook();

    OSTCBCur  = OSTCBHighRdy;

    OSPrioCur = OSPrioHighRdy;

    Get the stack pointer of the task to resume:
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Listing 13.17 shows the pseudocode for OSIntCtxSw() for a port made for a version of µC/OS-II
prior to v2.51. You should recognize such a port because of the added two items before calling
OSTaskSwHook(): L13.17(1) and L13.17(2).  ISRs for such a port also do not have the statements shown
in L13.15(3) to save the stack pointer into the OS_TCB of the interrupted task.  Therefore, OSIntCtxSw()
had to do these operations [again, L13.17(1) and L13.17(2)].  However, because the stack pointer was
not pointing to the proper stack-frame location (when OSIntCtxSw() starts executing, the return address
of OSIntExit() and OSIntCtxSw() were placed on the stack by the calls), the stack pointer needed to
be adjusted.  The solution was to add an offset to the stack pointer.  The value of this offset was depen-
dent on the compiler options and generated more e-mail messages than I expected or cared for.  One of
these e-mail messages was from a clever individual named Nicolas Pinault who pointed out how this
stack-adjustment business could all be avoided as previously described.  Because of Nicolas, µC/OS-II
is no longer dependent on compiler options.  Thanks again Nicolas!

13.06 Testing a Port
After you have a port of µC/OS-II for your processor, you need to verify its operation.  This part is prob-
ably the most complicated part of writing a port.  You should test your port without application code.  In
other words, test the operations of the kernel by itself.  There are two reasons to do this. First, you don’t

        Stack pointer = OSTCBHighRdy->OSTCBStkPtr;

    Restore all processor registers from the new task’s stack;

    Execute a return from interrupt instruction;

}

Listing 13.17 Pseudocode for OSIntCtxSw() prior to v2.51.
void OSIntCtxSw(void)

{

    Adjust the stack pointer to remove calls to:                             (1)

        OSIntExit();

        OSIntCtxSw();

    Save the current task’s stack pointer into the current task’s OS_TCB:    (2)

        OSTCBCur->OSTCBStkPtr = Stack Pointer;

    Call user-definable OSTaskSwHook();

    OSTCBCur  = OSTCBHighRdy;

    OSPrioCur = OSPrioHighRdy;

    Get the stack pointer of the task to resume:

        Stack pointer = OSTCBHighRdy->OSTCBStkPtr;

    Restore all processor registers from the new task’s stack;

    Execute a return from interrupt instruction;

}

Listing 13.16 Pseudocode for OSIntCtxSw() for v2.51 
and higher. (Continued)



Testing a Port  311

13
want to complicate things anymore than they need to be.  Second, if something doesn’t work, you know
that the problem lies in the port as opposed to your application.  Start with a couple of simple tasks and
the ticker interrupt service routine. After you get multitasking going, it’s quite simple to add your appli-
cation tasks.

You can use a number of techniques to test your port depending on your level of experience with
embedded systems and processors in general.  When I write a port, I generally follow the following four
steps:

Ensure that the code compiles, assembles, and links
Verify OSTaskStkInit() and OSStartHighRdy()
Verify OSCtxSw()
Verify OSIntCtxSw() and OSTickISR()

13.06.01 Ensure that the Code Compiles, Assembles, and Links
After you complete the port, you need to compile, assemble, and link it along with the µC/OS-II
processor-independent code.  This step is obviously compiler specific, and you need to consult your
compiler documentation to determine how to do this step.

I generally set up a simple test directory, as follows
\SOFTWARE\uCOS-II\processor\compiler\TEST

where, 
processor is the name of the processor or microcontroller for which you have done the port.
compiler is the name of the compiler you used.

Table 13.2 shows the directories you will need to work with, along with the files found in those direc-
tories.  In the TEST directory, you should have at least three files: TEST.C, INCLUDES.H, and OS_CFG.H.
Depending on the processor used, you might also need to have an interrupt-vector table, which I
assumed is called VECTORS.C, but it could certainly be called something else.

The TEST directory could also contain a MAKEFILE, which specifies compiler, assembler, and linker
directives to build your project.  A MAKEFILE assumes, of course, that you use a make utility.  If your
compiler provides an integrated development environment (IDE), you might not have a MAKEFILE, but
instead you could have project files specific to the IDE.

The port you did (refer to Section 13.01, “Directories and Files,”) should be found in the following
directory:

\SOFTWARE\uCOS-II\processor\compiler

Table 13.3 Files needed to test a port.

Directory File
\SOFTWARE\uCOS-II\processor\compiler\TEST TEST.C

OS_CFG.H

INCLUDES.H

VECTORS.C

MAKEFILE or IDE project file(s)

\SOFTWARE\uCOS-II\processor\compiler OS_CPU_A.ASM

OS_CPU_C.C

OS_CPU.H
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Listing 13.18 shows the contents of a typical INCLUDES.H. STRING.H is needed because
OSTaskCreateExt() uses the ANSI C function memset() to initialize the stack of a task.  The other
standard C header files (STDIO.H, CTYPE.H, and STDLIB.H) are not actually used by µC/OS-II but are
included in case your application needs them.

Listing 13.19 shows the contents of OS_CFG.H, which was set up to enable all the features of µC/OS-II.
You can find a similar file in the \SOFTWARE\uCOS-II\EX1_x86L\BC45\SOURCE directory of the com-
panion CD so that you can use it as a starting point, instead of typing an OS_CFG.H from scratch.

\SOFTWARE\uCOS-II\SOURCE OS_CORE.C

OS_FLAG.C

OS_MBOX.C

OS_MEM.C

OS_MUTEX.C

OS_Q.C

OS_SEM.C

OS_TASK.C

OS_TIME.C

uCOS_II.C

uCOS_II.H

Listing 13.18 Typical INCLUDES.H.
#include    <stdio.h>

#include    <string.h>

#include    <ctype.h>

#include    <stdlib.h>

#include    "os_cpu.h"

#include    "os_cfg.h"

#include   "ucos_ii.h"

Listing 13.19 OS_CFG.H  that enables all µC/OS-II 
features. 

                                       /* ---------------------- MISCELLANEOUS ----------------------- */

#define OS_ARG_CHK_EN             1    /* Enable (1) or Disable (0) argument checking                  */

#define OS_CPU_HOOKS_EN           1    /* uC/OS-II hooks are found in the processor port files         */

#define OS_LOWEST_PRIO           63    /* Defines the lowest priority that can be assigned ...         */

                                       /* ... MUST NEVER be higher than 63!                            */

Table 13.3 Files needed to test a port.
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#define OS_MAX_EVENTS            20    /* Max. number of event control blocks in your application ...  */

                                       /* ... MUST be > 0                                              */

#define OS_MAX_FLAGS             10    /* Max. number of Event Flag Groups    in your application ...  */

                                       /* ... MUST be > 0                                              */

#define OS_MAX_MEM_PART          10    /* Max. number of memory partitions ...                         */

                                       /* ... MUST be > 0                                              */

#define OS_MAX_QS                10    /* Max. number of queue control blocks in your application ...  */

                                       /* ... MUST be > 0                                              */

#define OS_MAX_TASKS             63    /* Max. number of tasks in your application ...                 */

                                       /* ... MUST be >= 2                                             */

#define OS_SCHED_LOCK_EN          1    /*     Include code for OSSchedLock() and OSSchedUnlock()       */

#define OS_TASK_IDLE_STK_SIZE   512    /* Idle task stack size (# of OS_STK wide entries)              */

#define OS_TASK_STAT_EN           1    /* Enable (1) or Disable(0) the statistics task                 */

#define OS_TASK_STAT_STK_SIZE   512    /* Statistics task stack size (# of OS_STK wide entries)        */

#define OS_TICKS_PER_SEC        200    /* Set the number of ticks in one second                        */

                                       /* ----------------------- EVENT FLAGS ------------------------ */

#define OS_FLAG_EN                1    /* Enable (1) or Disable (0) code generation for EVENT FLAGS    */

#define OS_FLAG_WAIT_CLR_EN       1    /* Include code for Wait on Clear EVENT FLAGS                   */

#define OS_FLAG_ACCEPT_EN         1    /*     Include code for OSFlagAccept()                          */

#define OS_FLAG_DEL_EN            1    /*     Include code for OSFlagDel()                             */

#define OS_FLAG_QUERY_EN          1    /*     Include code for OSFlagQuery()                           */

                                       /* -------------------- MESSAGE MAILBOXES --------------------- */

#define OS_MBOX_EN                1    /* Enable (1) or Disable (0) code generation for MAILBOXES      */

#define OS_MBOX_ACCEPT_EN         1    /*     Include code for OSMboxAccept()                          */

#define OS_MBOX_DEL_EN            1    /*     Include code for OSMboxDel()                             */

#define OS_MBOX_POST_EN           1    /*     Include code for OSMboxPost()                            */

#define OS_MBOX_POST_OPT_EN       1    /*     Include code for OSMboxPostOpt()                         */

#define OS_MBOX_QUERY_EN          1    /*     Include code for OSMboxQuery()                           */

                                       /* --------------------- MEMORY MANAGEMENT -------------------- */

#define OS_MEM_EN                 1    /* Enable (1) or Disable (0) code generation for MEMORY MANAGER */

#define OS_MEM_QUERY_EN           1    /*     Include code for OSMemQuery()                            */

                                       /* ---------------- MUTUAL EXCLUSION SEMAPHORES --------------- */

#define OS_MUTEX_EN               1    /* Enable (1) or Disable (0) code generation for MUTEX          */

Listing 13.19 OS_CFG.H  that enables all µC/OS-II 
features. (Continued)
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Listing 13.20 shows the contents of a simple TEST.C file with which you can start to prove your compile
process.  For this first step, there is no need for any more code because all we are trying to accomplish is
a build.  At this point, it’s up to you to resolve any compiler, assembler, and/or linker errors.  You might
also get some warnings, and you need to determine whether the warnings are severe enough to be a
problem.

#define OS_MUTEX_ACCEPT_EN        1    /*     Include code for OSMutexAccept()                         */

#define OS_MUTEX_DEL_EN           1    /*     Include code for OSMutexDel()                            */

#define OS_MUTEX_QUERY_EN         1    /*     Include code for OSMutexQuery()                          */

                                       /* ---------------------- MESSAGE QUEUES ---------------------- */

#define OS_Q_EN                   1    /* Enable (1) or Disable (0) code generation for QUEUES         */

#define OS_Q_ACCEPT_EN            1    /*     Include code for OSQAccept()                             */

#define OS_Q_DEL_EN               1    /*     Include code for OSQDel()                                */

#define OS_Q_FLUSH_EN             1    /*     Include code for OSQFlush()                              */

#define OS_Q_POST_EN              1    /*     Include code for OSQPost()                               */

#define OS_Q_POST_FRONT_EN        1    /*     Include code for OSQPostFront()                          */

#define OS_Q_POST_OPT_EN          1    /*     Include code for OSQPostOpt()                            */

#define OS_Q_QUERY_EN             1    /*     Include code for OSQQuery()                              */

                                       /* ------------------------ SEMAPHORES ------------------------ */

#define OS_SEM_EN                 1    /* Enable (1) or Disable (0) code generation for SEMAPHORES     */

#define OS_SEM_ACCEPT_EN          1    /*    Include code for OSSemAccept()                            */

#define OS_SEM_DEL_EN             1    /*    Include code for OSSemDel()                               */

#define OS_SEM_QUERY_EN           1    /*    Include code for OSSemQuery()                             */

                                       /* --------------------- TASK MANAGEMENT ---------------------- */

#define OS_TASK_CHANGE_PRIO_EN    1    /*     Include code for OSTaskChangePrio()                      */

#define OS_TASK_CREATE_EN         1    /*     Include code for OSTaskCreate()                          */

#define OS_TASK_CREATE_EXT_EN     1    /*     Include code for OSTaskCreateExt()                       */

#define OS_TASK_DEL_EN            1    /*     Include code for OSTaskDel()                             */

#define OS_TASK_SUSPEND_EN        1    /*     Include code for OSTaskSuspend() and OSTaskResume()      */

#define OS_TASK_QUERY_EN          1    /*     Include code for OSTaskQuery()                           */

                                       /* --------------------- TIME MANAGEMENT ---------------------- */

#define OS_TIME_DLY_HMSM_EN       1    /*     Include code for OSTimeDlyHMSM()                         */

#define OS_TIME_DLY_RESUME_EN     1    /*     Include code for OSTimeDlyResume()                       */

#define OS_TIME_GET_SET_EN        1    /*     Include code for OSTimeGet() and OSTimeSet()             */

typedef INT16U             OS_FLAGS;   /* Date type for event flag bits (8, 16 or 32 bits)             */

Listing 13.19 OS_CFG.H  that enables all µC/OS-II 
features. (Continued)
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13.06.02 Verify OSTaskStkInit() and OSStartHighRdy()
After you achieve a successful build, you are actually ready to start testing your port.  As the title of this
section suggests, this step verifies the proper operation of OSTaskStkInit() and OSStartHighRdy().

Testing with a Source Level Debugger

If you have a source-level debugger, you should be able to verify this step fairly quickly.  I assume you
already know how to use your debugger.

Start by modifying OS_CFG.H to disable the statistic task by setting OS_TASK_STAT_EN to 0. Because
your TEST.C file (see Listing 13.20) doesn’t create any application task, the only task created is the µC/OS-II
idle task: OS_TaskIdle().  You will step into the code until µC/OS-II switches to OS_TaskIdle().

You should load the code into the debugger and start single-stepping into main().  You should step
over the function OSInit() and then step into the code for OSStart() (shown in Listing 13.21).  Step
through the code until you reach the call to OSStartHighRdy() [the last statement in OSStart()] and
then step into the code for OSStartHighRdy().  At this point, your debugger should switch to
assembly-language mode because OSStartHighRdy() is written in assembly language.  This is the code
you wrote to start the first task, and, because we didn’t create any task other than OS_TaskIdle(),
OSStartHighRdy() should start this task.

Listing 13.20 Minimal TEST.C for step #1.
#include    “includes.h”

void  main (void)

{

    OSInit();

    OSStart();

}

Listing 13.21 OSStart(). 
void  OSStart (void)

{

    INT8U y;

    INT8U x;

    if (OSRunning == FALSE) {

        y             = OSUnMapTbl[OSRdyGrp];

        x             = OSUnMapTbl[OSRdyTbl[y]];

        OSPrioHighRdy = (INT8U)((y << 3) + x);

        OSPrioCur     = OSPrioHighRdy;

        OSTCBHighRdy  = OSTCBPrioTbl[OSPrioHighRdy];
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Step through your code and verify that it does what you expect. Specifically, OSStartHighRdy()
should start populating CPU registers in the reverse order that they were placed onto the task stack by
OSTaskStkInit() (see OS_CPU_C.C).  If the order isn’t correct, you most likely misaligned the stack
pointer.  In this case, you must correct OSTaskStkInit() accordingly.  The last instruction in
OSStartHighRdy() should be a return from interrupt, and, as soon as you execute that code, your
debugger should be positioned at the first instruction of OS_TaskIdle().  If this action doesn’t happen,
you might not have placed the proper start address of the task onto the task stack, and you will most
likely have to correct this problem in OSTaskStkInit(). If your debugger ends up in OS_TaskIdle()
and you can execute a few times through the infinite loop, you are done with this step and have succes-
fully verified OSTaskStkInit() and OSStartHighRdy().

Go/No Go Testing

If you don’t have access to a source-level debugger but have an LED on your target system, you can
write a Go/No Go test.  Start by turning off the LED. If OSTaskStkInit() and OSStartHighRdy()
works, the LED is turned on by the idle task.  In fact, the LED is turned on and off very quickly and
appears to always be on. If you have an oscilloscope, you should be able to confirm that the LED is
blinking at a roughly 50% duty cycle.  

For this test, you need to temporarily modify three files: OS_CFG.H, OS_CPU_C.C, and TEST.C.
In OS_CFG.H, you need to disable the statistic task by setting OS_TASK_STAT_EN to 0.  In TEST.C, you
need to add code to turn off the LED, as shown in Listing 13.22.  In OS_CPU_C.C, you need to modify
OSTaskIdleHook() to toggle the LED as shown in the pseudocode of Listing 13.23.

The next step is to load the code in your target system and run it.  If the LED doesn’t toggle, you
need to find out what’s wrong in either OSTaskStkInit() or OSStartHighRdy().  With such limited
and primitive tools, the best you can do is carefully inspect your code until you find what you did
wrong!     

        OSTCBCur      = OSTCBHighRdy;

        OSStartHighRdy();

    }

}

Listing 13.22 Modifying main() in TEST.C.
#include    “includes.h”

void  main (void)

{

    OSInit();

    Turn OFF LED;

    OSStart();

}

Listing 13.21 OSStart(). (Continued)
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13.06.03 Verify OSCtxSw()
This step should be easy because in the previous step, we verified that the stack frame of a task is cor-
rectly initialized by OSTaskStkInit().  For this test, we create an application task and force a context
switch back to the idle task. For this test, you need to ensure that you have correctly set up the software
interrupt or TRAP to vector to OSCtxSw(). You’ll have to determine how to do this.

Testing with a Source-Level Debugger

Start by modifying main() in TEST.C, as shown in Listing 13.24.  For sake of discussion, I decided to
assume that the stack of your processor grows downwards from high to low memory and that 100
entries are sufficient stack space for the test task. Of course, you should modify this code according to
your own processor requirements. 

Listing 13.23 Modifying OSTaskIdleHook() in OS_CPU_C.C.
void  OSTaskIdleHook (void)

{

    if (LED is ON) {              /* Toggle LED                 */

        Turn OFF LED;

    } else {

        Turn ON LED;

    }

}

Listing 13.24 Testing OSCtxSw() using a debugger.
#include    “includes.h”

OS_STK  TestTaskStk[100];

void  main (void)

{

    OSInit();

    OSTaskCreate(TestTask, (void *)0, &TestTaskStk[99], 0);                  (1)

    OSStart();

}

void  TestTask (void *pdata)                                                 (2)

{

    pdata = pdata;

    while (1) {

        OSTimeDly(1);                                                        (3)

    }

}
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L13.24(1) We create a high priority task. I decided to use priority level 0, but you can use anything
below OS_LOWEST_PRIO (see OS_CFG.H).

L13.24(2) Because we proved in Section 13.06.02, “Verify OSTaskStkInit() and
OSStartHighRdy(),” that OSStartHighRdy() works, µC/OS-II should start executing
TestTask() as its first task instead of executing the idle task.  You can step through the code
until you get to the beginning of TestTask().

L13.24(3) TestTask() enters an infinite loop that continuously calls OSTimeDly(1).  In other words,
TestTask() doesn’t really do anything except wait for time to expire. Because we didn’t
enable interrupts nor did we start the clock tick, OSTimeDly(1) never returns to TestTask()!

You can now step into OSTimeDly(). OSTimeDly() calls OS_Sched(), and OS_Sched() in turn calls
the assembly-language function OSCtxSw(). In most cases, the call is accomplished through a TRAP or
software-interrupt mechanism.  In other words, if you set up the software interrupt or TRAP correctly,
this instruction should cause the CPU to start executing OSCtxSw().  You can step through the code for
OSCtxSw() and see the registers of TestTask() being saved onto its stack and the value of the registers
for OS_TaskIdle() being loaded into the CPU.  When the return from interrupt is executed (for the soft-
ware interrupt or TRAP), you should be in OS_TaskIdle()!

If OSCtxSw() doesn’t bring you into OS_TaskIdle() you need to find out why and make the neces-
sary corrections to OSCtxSw().

Go/No Go Testing

Modify main() in TEST.C, as shown in Listing 13.25.  I decided to assume that the stack of your proces-
sor grows downwards from high to low memory and that 100 entries are sufficient stack space for the
test task. 

Listing 13.25 Testing OSCtxSw() using an LED. 
#include    “includes.h”

OS_STK  TestTaskStk[100];

void  main (void)

{

    OSInit();

    Turn OFF LED;                                                            (1)

    OSTaskCreate(TestTask, (void *)0, &TestTaskStk[99], 0);                  (2)

    OSStart();

}
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L13.25(1) You need to turn off the LED before you run the rest of the code so that if the test fails, hope-
fully the LED is turned off.  I say hopefully because the processor could crash and still turn
the LED on.  However, if OSCtxSw() is written correctly, the LED should toggle very
quickly, and you can thus verify this with an oscilloscope.

L13.25(2) We create a high priority task.  I decided to use priority level 0, but you can use anything
below OS_LOWEST_PRIO (see OS_CFG.H).

L13.25(3) Because we proved in “Verify OSTaskStkInit() and OSStartHighRdy()” (Section
13.06.02) that OSStartHighRdy() works, µC/OS-II should start executing TestTask() as its
first task instead of executing the idle task. 

L13.25(4) TestTask() enters an infinite loop that continuously calls OSTimeDly(1).  In other words,
TestTask() doesn’t really do anything except wait for time to expire.    Because we didn’t
enable interrupts nor did we start the clock tick, OSTimeDly(1) never returns to TestTask()!
When OSTimeDly(1) is called, a context switch to the idle task should occur (if OSCtxSw() is
properly written), and you should get the LED to blink very quickly.  In fact, it blinks so fast
that it appears to be always on.  You should verify that it blinks using an oscilloscope (if one
is available).  If the LED is not blinking or is off, you need to find out why and make the nec-
essary corrections to OSCtxSw().

13.06.04 Verify OSIntCtxSw() and OSTickISR()
This step should be easy because OSIntCtxSw() is similar to but simpler than OSCtxSw().  In fact, most
of the code for OSIntCtxSw() can be borrowed from OSCtxSw().  For this test, you need to set up an
interrupt vector for the clock tick ISR.  We then initialize the clock tick and enable interrupts.

Start by modifying main() in TEST.C, as shown in Listing 13.26.  

void  TestTask (void *pdata)                                                 (3)

{

    pdata = pdata;

    while (1) {

        OSTimeDly(1);                                              (4)

    }

}

Listing 13.26 Testing OSIntCtxSw() and 
OSTickISR(). 

#include    “includes.h”

OS_STK  TestTaskStk[100];

Listing 13.25 Testing OSCtxSw() using an LED. (Continued)



320 Chapter 13: Porting µC/OS-II
void  main (void)

{

    OSInit();

    Turn LED OFF;                                                            (1)

    Install the clock tick interrupt vector;                                 (2)

    OSTaskCreate(TestTask, (void *)0, &TestTaskStk[99], 0);                  (3)

    OSStart();

}

void  TestTask (void *pdata)                                                 (4)

{

    BOOLEAN  led_state;

    pdata = pdata;

    Initialize the clock tick interrupt (i.e. timer);                        (5)

    Enable interrupts;                                                       (6)

    led_state = FALSE;

    Turn ON LED;                                                             (7)

    while (1) {

        OSTimeDly(1);                                                        (8)

        if (led_state == FALSE) {                                            (9)

            led_state = TRUE;

            Turn ON LED;

        } else {

            led_state = FALSE;

            Turn OFF LED;

        }

    }

}

Listing 13.26 Testing OSIntCtxSw() and 
OSTickISR(). (Continued)
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L13.26(1) Regardless of whether you have a degugger or not, it’s useful for this test to have access to an
LED (or some display device).  You need to turn off the LED before you run the rest of the
code.

L13.26(2) You need to install the clock-tick-interrupt vector.  You need to consult your compiler or pro-
cessor documentation to determine how to perform the installation.  Some processors do not
allow you to install interrupt vectors at run time (e.g., the Motorola 68HC11 assumes that
vectors reside in ROM).  The tick interrupt needs to vector to your port’s OSTickISR().

L13.26(3) We create a high priority task. I decided to use priority level 0, but you can use anything
below OS_LOWEST_PRIO (see OS_CFG.H).

L13.26(4) Again, because we proved in Section 13.06.02, “Verify OSTaskStkInit() and
OSStartHighRdy(),” that OSStartHighRdy() works, µC/OS-II should start executing
TestTask() as its first task. 

L13.26(5) Upon entry into TestTask(), you should intialize the device (typically a timer) to generate a
clock-tick interrupt at the desired rate.  I would recommend making the tick rate 10Hz or so,
in order to be able to make the LED blink at 5Hz.  This tick rate should match what you set
OS_TICKS_PER_SEC to in OS_CFG.H.

L13.26(6) You can now enable interrupts to allow the tick interrupt to invoke OSTickISR().

L13.26(7) Turn on the LED to show that you made it to TestTask().

L13.26(8) The call to OSTimeDly() causes a context switch to the idle task using OSCtxSw().  The idle
task spins until the tick interrupt is received.  The tick interrupt should invoke OSTickISR(),
which in turn calls OSTimeTick(). OSTimeTick() decrements the .OSTCBDly count of
TestTask() to 0 and makes this task ready to run.  When OSTickISR() completes and calls
OSIntExit(), OSIntExit() should notice that the more important task, TestTask(), is
ready to run. The ISR, therefore, does not return to the idle task, but instead performs a context
switch back to TestTask(). Of course, all this assumes that OSIntCtxSw() and OSTickISR()
are both working.

L13.26(9) If OSIntCtxSw() does work, you ought to see the LED blink at 5Hz if you set the tick rate at
10Hz.

If the LED is not blinking and you are using a debugger, you can set a breakpoint in OSTickISR()
and follow what’s going on. I would also suggest trying to run the ISR without having it call OSIntExit().
In this case, you could simply have the ISR blink the LED (or another LED).  If the LED is blinking,
then the problem is with OSIntCtxSw(). Again, because OSIntCtxSw() should have been derived from
OSCtxSw(), I suspect that the problem is in the OSTickISR().

At this point, your port should work, and you can now start adding application tasks.  Have fun!
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OSCtxSw()
void OSCtxSw(void)

This function is called to perform a task-level context switch.  Generally, this function is invoked via a
software-interrupt instruction (also called a TRAP instruction).  The pseudocode for this function is

Arguments
none

Return Values
none

Notes/Warnings
1. Interrupts are disabled when this function is called.

2. Some compilers allow you to create software interrupts (or TRAPS) directly in C, and thus you 
could place this function in OS_CPU_C.C.  In some cases, the compiler also requires that you 
declare the prototype for this function differently.  In this case, you can define the #define con-
stant OS_ISR_PROTO_EXT in your INCLUDES.H, which allows you to delare OSCtxSw() differently.  
In other words, you are not forced to use the void OSCtxSw(void) prototype.

Example
none

File Called from
OS_CPU_A.ASM OS_TASK_SW() Always needed

void  OSCtxSw (void)

{

    Save processor registers;

    Save the current task’s stack pointer into the current task’s OS_TCB:

        OSTCBCur->OSTCBStkPtr = Stack pointer;

    OSTaskSwHook();                                  

    OSTCBCur  = OSTCBHighRdy;                                            

    OSPrioCur = OSPrioHighRdy;                                           

    Get the stack pointer of the task to resume:                         

        Stack pointer = OSTCBHighRdy->OSTCBStkPtr;

    Restore all processor registers from the new task’s stack;           

    Execute a return from interrupt instruction;                         

}
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OSInitHookBegin()
void OSInitHookBegin(void)

This function is called by OSInit() at the very beginning of OSInit(). This function allows you to per-
form CPU (or other) initialization as part of OSInit(). For example, you can initialize I/O devices from
OSInitHookBegin(). The function encapsulates the initialization as part of the port. In other words, it
prevents requiring that the user of µC/OS-II know anything about such additional initialization.

Arguments
none

Return Values
none

Notes/Warnings
none

Example
none

File Called from Code enabled in OS_CPU_C.C if
OS_CPU_C.C OSInit() OS_CPU_HOOKS_EN == 1
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OSInitHookEnd()
void OSInitHookEnd(void)

This function is called by OSInit() at the very end of OSInit(). This function allows you to perform
CPU (or other) initialization as part of OSInit(). For example, you can initialize I/O devices from
OSInitHookEnd(). The function encapsulates the initialization as part of the port. The users of
µC/OS-II, therefore, do no need to know anything about such additional initialization.

Arguments
none

Return Values
none

Notes/Warnings
none

Example
none

File Called from Code enabled in OS_CPU_C.C if
OS_CPU_C.C OSInit() OS_CPU_HOOKS_EN == 1
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OSIntCtxSw()
void OSIntCtxSw(void)

This function is called from OSIntExit() when OSIntExit() determines that a higher priority task
must be executed because of an ISR.  The pseudocode for this function is

Arguments
none

Return Values
none

Notes/Warnings
1. Interrupts are disabled when this function is called.

Example
none

File Called from
OS_CPU_A.ASM OSIntExit() Always needed

void  OSIntCtxSw (void)

{

    OSTaskSwHook();

    OSTCBCur  = OSTCBHighRdy;

    OSPrioCur = OSPrioHighRdy;

    Get the stack pointer of the task to resume:

        Stack pointer = OSTCBHighRdy->OSTCBStkPtr;

    Restore all processor registers from the new task’s stack;

    Execute a return from interrupt instruction;

}
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OSStartHighRdy()
void OSStartHighRdy(void)

This function is called from OSStart() to start the highest priority task that you created before you
called OSStart(). The pseudocode for this function is

Arguments
none

Return Values
none

Notes/Warnings
1. Interrupts are disabled when this function is called.

Example
none

File Called from
OS_CPU_A.ASM OSStart() Always needed

void OSStartHighRdy (void)

{

    OSTaskSwHook();

    OSRunning = TRUE;
    Get the stack pointer of the task to resume:

        Stack pointer = OSTCBHighRdy->OSTCBStkPtr;

    Restore all processor registers from the new task's stack;

    Execute a return from interrupt instruction;

}

void OSStartHighRdy (void)
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OSTaskCreateHook()
void OSTaskCreateHook(OS_TCB *ptcb)

This function is called whenever a task is created, after a TCB has been allocated and initialized and after
the stack frame of the task is initialized. OSTaskCreateHook() allows you to extend the functionality
of the task-creation function with your own features. For example, you can initialize and store the con-
tents of floating-point registers, MMU registers, or anything else that can be associated with a task. Typi-
cally, you store this additional information in memory allocated by your application. You should note that
OSTaskCreateHook() is called immediately after another hook function called OSTCBInitHook().  In
other words, either of these functions can be used to initialize the TCB.  However, you ought to use
OSTCBInitHook() for TCB-related items and OSTaskCreateHook() for other task-related items. You
could also use OSTaskCreateHook() to trigger an oscilloscope or a logic analyzer or to set a breakpoint.

Arguments
ptcb is a pointer to the TCB of the task created.

Return Values
none

Notes/Warnings
1. Interrupts are enabled when this function is called. You, therefore, might need to call

OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL() to protect critical sections inside 
OSTaskCreateHook().

Example
This example assumes that you have created a task using OSTaskCreateExt() because the function
expects to have the .OSTCBExtPtr field in the task’s OS_TCB contain a pointer to storage for float-
ing-point registers.

File Called from Code enabled in OS_CPU_C.C if
OS_CPU_C.C OSTaskCreate() and 

OSTaskCreateExt()
OS_CPU_HOOKS_EN == 1

void OSTaskCreateHook (OS_TCB *ptcb)

{

    if (ptcb->OSTCBExtPtr != (void *)0) {

        /* Save contents of floating-point registers in .. */

        /* .. the TCB extension                            */

    }

}
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OSTaskDelHook()
void OSTaskDelHook(OS_TCB *ptcb)

This function is called whenever you delete a task by calling OSTaskDel(). You can dispose of memory
you have allocated through the task-create hook, OSTaskCreateHook(). OSTaskDelHook() is called
just before the TCB is removed from the TCB chain. You can also use OSTaskCreateHook() to trigger
an oscilloscope or a logic analyzer or to set a breakpoint.

Arguments
ptcb is a pointer to the TCB of the task being deleted.

Return Values
none

Notes/Warnings
1. Interrupts are disabled when this function is called. You, therefore, should keep the code in this func-

tion to a minimum because it directly affects interrupt latency.

Example

File Called from Code enabled in OS_CPU_C.C if
OS_CPU_C.C OSTaskDel() OS_CPU_HOOKS_EN == 1

void OSTaskDelHook (OS_TCB *ptcb)

{

    /* Output signal to trigger an oscilloscope           */

}
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OSTaskIdleHook()
void OSTaskIdleHook(void)

This function is called by the idle task [OS_TaskIdle()] when no other higher priority task is ready to
run. OSTaskIdleHook() can be used to force the CPU in low-power mode for battery-operated products
to conserve energy when none of your tasks need to be serviced.

Arguments
none

Return Values
none

Notes/Warnings
1. OSTaskIdleHook() is called with interrupts enabled.

Example

File Called from Code enabled in OS_CPU_C.C if
OS_CPU_C.C OS_TaskIdle() OS_CPU_HOOKS_EN == 1

void OSTaskIdleHook (void)

{

    /* Put the CPU in low power mode.                        */

}
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OSTaskStatHook()
void OSTaskStatHook(void)

This function is called every second by µC/OS-II’s statistic task. OSTaskStatHook() allows you to add
your own statistics.

Arguments
none

Return Values
none

Notes/Warnings
1. The statistic task starts executing about five seconds after calling OSStart(). Note that this function 

is not called if either OS_TASK_STAT_EN or OS_TASK_CREATE_EXT_EN is set to 0.

Example

File Called from Code enabled in OS_CPU_C.C if
OS_CPU_C.C OS_TaskStat() OS_CPU_HOOKS_EN == 1

void OSTaskStatHook (void)

{

    /* Compute the total execution time of all the tasks     */

    /* Compute the percentage of execution of each task      */

}
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OSTaskStkInit()
OS_STK *OSTaskStkInit(void (*task)(void *pd),
                      void *pdata,
                      OS_STK *ptos,
                      INT16U opt);

This function is called by either OSTaskCreate() or OSTaskCreateExt() to initialize the stack frame
of a task.  Generally speaking, the stack frame is made to look as if an interrupt has just occurred and all
the CPU registers have been saved onto it.  The pseudocode for this function is

Arguments
task is a pointer to the task code (i.e., the address of the function that you want to declare as a

task).

pdata is a pointer to a user-supplied data area that is be passed to the task when the task first exe-
cutes. Sometimes, the compiler will pass pdata into registers while other compilers will pass
pdata on the stack. You will need to consult your compiler documentation for the actual
method used.

ptos is a pointer to the top of the stack. It is assumed that ptos points to a free entry on the task
stack.  If OS_STK_GROWTH is set to 1, then ptos contains the highest valid address of the
stack.  Similarly, if OS_STK_GROWTH is set to 0, ptos contains the lowest valid address of the
stack.

opt specifies options that can be used to alter the behavior of OSTaskStkInit(). See uCOS_II.H
for OS_TASK_OPT_???.

Return Values
A pointer to the new top-of-stack.

File Called from
OS_CPU_C.C OSTaskCreate() or OSTaskCreateExt() Always needed

OS_STK *OSTaskStkInit (void  (*task)(void *pd),

                       void   *pdata,

                       OS_STK *ptos,

                       INT16U  opt);

{

    Simulate call to function with an argument (i.e. pdata);

    Simulate ISR vector;

    Setup stack frame to contain desired initial values of all registers;

    Return new top-of-stack pointer to caller;

}



332 Chapter 13: Porting µC/OS-II
Notes/Warnings
1. Interrupts are enabled when this function is called.

Example
none
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OSTaskSwHook()
void OSTaskSwHook(void)

This function is called whenever a context switch is performed. The global variable OSTCBHighRdy
points to the TCB of the task that gets the CPU, and OSTCBCur points to the TCB of the task being
switched out. OSTaskSwHook() is called just after saving the task’s registers and after saving the stack
pointer into the current task’s TCB. You can use this function to save/restore the contents of float-
ing-point registers or MMU registers, to keep track of task-execution time and of how many times the
task has been switched in, and more. OSTaskSwHook() is also called by OSStartHighRdy().  You,
therefore, need to verify the flag OSRunning in OSTaskSwHook(), so you don’t perform any action as
you would when a task is switched out (see the example).

Arguments
none

Return Values
none

Notes/Warnings
1. Interrupts are disabled when this function is called. You, therefore, should keep the code in this func-

tion to a minimum because it directly affects interrupt latency.

Example

File Called from Code enabled in OS_CPU_C.C if
OS_CPU_C.C OSCtxSw() and OSIntCtxSw() OS_CPU_HOOKS_EN == 1

void OSTaskSwHook (void)

{

    if (OSRunning == TRUE) {

        /* Save floating-point registers in current task’s TCB ext. */

    }

    /* Restore floating-point registers from new task’s TCB ext.    */

}



334 Chapter 13: Porting µC/OS-II
OSTCBInitHook()
void OSTCBInitHook(OS_TCB *ptcb)

This function is called whenever a task is created, after a TCB has been allocated and initialized and
when the stack frame of the task is initialized. OSTCBInitHook() allows you to extend the functionality
of the TCB-creation function with your own features. For example, you can initialize and store the con-
tents of floating-point registers, MMU registers, or anything else that can be associated with a task. Typ-
ically, you store this additional information in memory allocated by your application. You should note
that OSTCBInitHook() is called immediately before OSTaskCreateHook(). In other words, either of
these functions can be used to initialize the TCB.  However, you ought to use OSTCBInitHook() for
TCB-related items and OSTaskCreateHook() for other task-related items.

Arguments
ptcb is a pointer to the TCB of the task created.

Return Values
none

Notes/Warnings
1. Interrupts are enabled when this function is called. You, therefore, might need to call

OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL() to protect critical sections inside 
OSTCBInitHook().

Example
This example assumes that you have created a task using OSTaskCreateExt() because the function
expects to have the .OSTCBExtPtr field in the task’s OS_TCB contain a pointer to storage for float-
ing-point registers.

File Called from Code enabled in OS_CPU_C.C if
OS_CPU_C.C OS_TCBInit() OS_CPU_HOOKS_EN == 1

void OSTCBInitHook (OS_TCB *ptcb)

{

    if (ptcb->OSTCBExtPtr != (void *)0) {

        /* Save contents of floating-point registers in .. */

        /* .. the TCB extension                            */

    }

}
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OSTickISR()
void OSTickISR(void)

When a tick interrupt occurs, the CPU needs to vector to this ISR. The pseudocode for the ISR is

Arguments
none

Return Values
none

Notes/Warnings
1. The interrupting device that causes the call to OSTickISR() should generally be set up to generate 

an interrupt every 10 to 100ms.

2. Some compilers allow you to create ISRs directly in C, and thus you could place this function in
OS_CPU_C.C.  In some cases, the compiler also requires that you declare the prototype for this func-
tion differently.  In this case, you can define the #define constant OS_ISR_PROTO_EXT in your 
INCLUDES.H, which allows you to delare OSTickISR() differently. In other words, you are not 
forced to use the void OSTickISR(void) prototype.

Example
none

File Called from
OS_CPU_A.ASM Tick Interrupt Always needed

Void  OSTickISR (void)

{

   Save processor registers;                                    

   Call OSIntEnter() or increment OSIntNesting;                 

   if (OSIntNesting == 1) {                                      

      OSTCBCur->OSTCBStkPtr = Stack Pointer;

   }

   Clear interrupting device;                                    

   Re-enable interrupts (optional);                              

   OSTimeTick();                                            

   OSIntExit();                                             

   Restore processor registers;                                  

   Execute a return from interrupt instruction;                  

}
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OSTimeTickHook()
void OSTimeTickHook(void)

This function is called by OSTimeTick(), which in turn is called whenever a clock tick occurs.
OSTimeTickHook() is called immediately upon entering OSTimeTick() and allows execution of
time-critical code in your application. You can also use this function to trigger an oscilloscope for
debugging, trigger a logic analyzer, or establish a breakpoint for an emulator.

Arguments
none

Return Values
none

Notes/Warnings
1. OSTimeTick() is generally called by an ISR, so the execution time of the tick ISR is increased by 

the code you provide in this function. Interrupts might or might not be enabled when 
OSTimeTickHook() is called, depending on how the processor port has been implemented. If inter-
rupts are disabled, this function affects interrupt latency.

Example

File Called from Code enabled in OS_CPU_C.C if
OS_CPU_C.C OSTimeTick() OS_CPU_HOOKS_EN == 1

void OSTimeTickHook (void)

{

    /* Trigger an oscilloscope                               */

}
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Chapter 14

80x86 Port
Real Mode, Large Model
with Emulated Floating-Point Support

This chapter describes how µC/OS-II has been ported to the Intel 80x86 series of processors running in
real mode, large model for the Borland C++ v4.51 tools.  This port assumes that your application does
not do any floating-point math, or, if it does, it uses the Borland Floating-Point Emulation library. In
other words, I assume that you are using this port with embedded 80186, 80286, 80386, or even plain
8086 class processors that rely only on integer math. This port can also be adapted (i.e., changed) to run
plain 8086 processors but requires that you replace the use of the PUSHA/POPA instructions with the
proper number of PUSH/POP instructions.

The Intel 80x86 series includes the 80186, 80286, 80386, 80486, PentiumsTM (all models), and Cel-
eron, as well most 80x86 processors from AMD, NEC (V-series), and others. Literally millions of
80x86 CPUs are sold each year. Most of these end up in desktop computers, but a growing number of
processors are making their way into embedded systems. It’s predicted that we will see 10GHz proces-
sors by 2005.

Most C compilers that support 80x86 processors running in real mode offer different memory mod-
els, each suited for a different program and data size. Each model uses memory differently. The large
model allows your application (code and data) to reside in a 1MB memory space. Pointers in this model
require 32 bits, although they only address up to 1MB. The next section shows why a 32-bit pointer in
this model can only address 20 bits worth of memory.

Figure 14.1 shows the programming model of an 80x86 processor running in real mode. All registers
are 16-bits wide, and they all need to be saved during a context switch.  As can be seen, there are no
floating-point registers because these are emulated by the Borland compiler library using the integer
registers.

The 80x86 provides a clever mechanism to access up to 1MB of memory with its 16-bit registers.
Memory addressing relies on using a segment and an offset register. Physical-address calculation is
done by shifting a segment register by four (multiplying it by 16) and adding one of five other registers
 337
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(BP, SP, SI, DI, or IP). The result is a 20-bit address that can access up to 1MB Figure 14.2 shows how
the registers are combined. Each segment points to a block of 16 memory locations called a paragraph.
A 16-bit segment register can point to any of 65,536 different paragraphs of 16 bytes and thus can
address 1,048,576 bytes. Because the offset is also 16 bits, a single segment of code cannot exceed
64KB. In practice, however, programs are made up of many smaller segments.

Figure 14.1 80x86 real-mode register model.

Figure 14.2 Addressing with a segment and an offset register.
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The code segment register (CS) points to the base of the program currently executing. The stack seg-
ment register (SS) points to the base of the stack. The data segment register (DS) points to the base of
one data area. The extra segment register (ES) points to the base of another area where data can be
stored. Each time the CPU needs to generate a memory address, one of the segment registers is automat-
ically chosen, and its contents are added to an offset register. It is common to find the seg-
ment-colon-offset notation in literature in order to reference a memory location. For example,
1000:00FF represents physical memory location 0x100FF.

14.00 Development Tools
I used the Borland C/C++ v4.51 compiler, along with the Borland Turbo Assembler, to port and test the
80x86 port. This compiler generates reentrant code and provides in-line assembly language instructions
that can be inserted in C code. The compiler comes with a floating-point emulation library that simu-
lates the floating-point hardware found on 80x86 processors that are equipped with floating-point hard-
ware. Once compiled, the code is executed on a PC. I tested the code on a 300MHz Pentium-II-based
computer running the Microsoft Windows 2000 operating system. In fact, I configured the compiler to
generate a DOS executable, which was run in a DOS window.

I thought of changing compilers because some readers have complained that they can’t find the Bor-
land tools anymore, which makes it harder to build the example code provided in this book.  It turns out
that a similar compiler and assembler that can compile the example code is available from Borland for
only $70 USD (circa 2002).  Borland calls it the Turbo C++ Suite for DOS, and you can order a copy by
visiting the Borland Web site at www.Borland.com and following the links to this product.

You can also get professional 80x86-level tools from Paradigm (www.DevTools.com) that contain
not only a Borland-compatible compiler and assembler but also an IDE, a utility that allows you to
locate your code for deployment in embedded systems, a source-level debugger, and more.  Paradigm
calls their package, the Paradigm C++ Professional Real.

Finally, you can also adapt the port provided in this chapter to other 80x86 compilers as long as they
generate real-mode code. You will most likely have to change some of the compiler options and assem-
bler directives if you use a different development environment.

Table 14.1 shows the Borland C/C++ compiler v4.51 options (i.e., flags) supplied on the command
line.  These settings are used to compile the port, as well as the example code provided in Chapter 1.

Table 14.1 Compiler options used to compile port and 
examples. 

Option (i.e., Setting) Description
-1 Generate 80186 code

-B Compile and call assembler

-c Compiler to .OBJ

-G Select code for speed

-I Path to compiler include files is C:\BC45\INCLUDE

-k- Standard stack frame

-L Path to compiler libraries is C:\BC45\LIB
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Table 14.2 shows the Borland Turbo Assembler v4.0 options (i.e., flags) supplied on the command
line.  These settings are used to assemble the port’s OS_CPU_A.ASM. 

14.01 Directories and Files
The installation program provided on the companion CD installs the port for the Intel 80x86 (real mode,
large model) on your hard disk. The port is found under the \SOFTWARE\uCOS-II\Ix86L\BC45 direc-
tory. The directory name stands for Intel 80x86 real mode, Large model and is placed in the Bor-
land C++ v4.5x directory. The source code for the port is found in the following files: OS_CPU.H,
OS_CPU_C.C, and OS_CPU_A.ASM. 

-ml Large-memory model

-N- Do not check for stack overflow

-n..\obj Path where to place object files is ..\OBJ

-O Optimize jumps

-Ob Dead code elimination

-Oe Global register allocation

-Og Optimize globally

-Oi Expand common intrinsic functions in-line

-Ol Loop optimization

-Om Invariant code motion

-Op Copy propagation

-Ov Induction variable

-v Source debugging on
-vi Turn in-line expansion on
-wpro Error reporting: call to functions with no prototype

-Z Suppress redundant loads

Table 14.2 Assembler options used to assemble .ASM files.

Option (i.e., Setting) Description
/MX Case sensitive on globals

/ZI Full debugging info

/O Generate overlay code

Table 14.1 Compiler options used to compile port and 
examples. (Continued)
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14.02  INCLUDES.H
INCLUDES.H is a master include file and is found at the top of all .C files. INCLUDES.H allows every .C
file in your project to be written without concern about which header file is actually needed. The only
drawbacks to having a master include file are that INCLUDES.H might include header files that are not
pertinent to the actual .C file being compiled and that the compilation process might take longer. These
inconveniences are offset by code portability. You can edit INCLUDES.H to add your own header files, but
your header files should be added at the end of the list. Listing 14.1 shows the contents of INCLUDES.H
for the 80x86 port.

INCLUDES.H is not really part of the port but is described here because it is needed to compile the
port files.

14.03  OS_CPU.H
OS_CPU.H contains processor- and implementation-specific #defines constants, macros, and typedefs.
OS_CPU.H for the 80x86 port is shown in Listing 14.2.

OS_CPU_GLOBALS and OS_CPU_EXT allows you to declare global variables that are specific to this port
(described later).

Listing 14.1 INCLUDES.H.
#include    <stdio.h>

#include    <string.h>

#include    <ctype.h>

#include    <stdlib.h>

#include    <conio.h>

#include    <dos.h>

#include    <math.h>

#include    <setjmp.h>

#include    "os_cpu.h"

#include    "os_cfg.h"

#include    "ucos_ii.h"

#include    "pc.h"

Listing 14.2 OS_CPU.H. 
#ifdef  OS_CPU_GLOBALS

#define OS_CPU_EXT

#else

#define OS_CPU_EXT  extern

#endif
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14.03.01 OS_CPU.H, Data Types
L14.2(1) If you consult the Borland compiler documentation, you find that an int is 16 bits and a

long is 32 bits. 

L14.2(2) Floating-point data types are included even though µC/OS-II doesn’t make use of float-
ing-point numbers.

L14.2(3) A stack entry for the 80x86 processor running in real mode is 16-bits wide; thus, OS_STK is
declared accordingly. All task stacks must be declared using OS_STK as the data type.

L14.2(4) The status register (also called the processor flags) on the 80x86 processor running in real
mode is 16-bits wide.  The OS_CPU_SR data type is used only if OS_CRITICAL_METHOD is set
to 3, which it isn’t for this port.  I included the OS_CPU_SR data type anyway, in case you
use a different compiler and need to use OS_CRITICAL_METHOD #3.

L14.2(5) I also included data types to allow for backward compatibility with older µC/OS v1.xx
applications.  These are not necessary if you don’t have any applications written with
µC/OS v1.xx (you can simply delete these lines).

typedef unsigned char  BOOLEAN;                                              (1)

typedef unsigned char  INT8U;

typedef signed   char  INT8S;

typedef unsigned int   INT16U;

typedef signed   int   INT16S;

typedef unsigned long  INT32U;

typedef signed   long  INT32S;

typedef float          FP32;                                                 (2)

typedef double         FP64;

typedef unsigned int   OS_STK;                                               (3)

typedef unsigned short OS_CPU_SR;                                            (4)

#define BYTE           INT8S                                                 (5)

#define UBYTE          INT8U

#define WORD           INT16S

#define UWORD          INT16U

#define LONG           INT32S

#define ULONG          INT32U

Listing 14.2 OS_CPU.H. (Continued)
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14.03.02 OS_CPU.H, OS_ENTER_CRITICAL(), and OS_EXIT_CRITICAL()

L14.2(6) µC/OS-II, as with all real-time kernels, needs to disable interrupts in order to access
critical sections of code and re-enable interrupts when done. Because the Borland com-
piler supports in-line assembly language, it’s quite easy to specify the instructions to
disable and enable interrupts. µC/OS-II defines two macros to disable and enable inter-
rupts: OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL(), respectively. I actually
allow you to use one of three methods for disabling and enabling interrupts. For this
port, the preferred one is the second method because it’s directly supported by the com-
piler.

OS_CRITICAL_METHOD == 1

L14.2(7) The first and simplest way to implement these two macros is to invoke the processor
instruction to disable interrupts (CLI) for OS_ENTER_CRITICAL() and to enable interrupts
(STI) for OS_EXIT_CRITICAL().

OS_CRITICAL_METHOD == 2

L14.2(8) The second way to implement OS_ENTER_CRITICAL() is to save the interrupt-disable status
onto the stack and then disable interrupts. This action is accomplished on the 80x86 by exe-
cuting the PUSHF instruction, followed by the CLI instruction. OS_EXIT_CRITICAL() sim-
ply needs to execute a POPF instruction to restore the original contents of the processor’s SW
register. 

OS_CRITICAL_METHOD == 3

Listing 14.2 OS_CPU.H  (Continued)
#define  OS_CRITICAL_METHOD    2                                             (6)

#if      OS_CRITICAL_METHOD == 1

#define  OS_ENTER_CRITICAL()  asm  CLI                                       (7)

#define  OS_EXIT_CRITICAL()   asm  STI

#endif

#if      OS_CRITICAL_METHOD == 2

#define  OS_ENTER_CRITICAL()  asm {PUSHF; CLI}                               (8)

#define  OS_EXIT_CRITICAL()   asm  POPF

#endif

#if      OS_CRITICAL_METHOD == 3

#define  OS_ENTER_CRITICAL()  (cpu_sr = OSCPUSaveSR())                       (9)

#define  OS_EXIT_CRITICAL()   (OSCPURestoreSR(cpu_sr))

#endif

#if OS_CRITICAL_METHOD == 3                                                 (10)

OS_CPU_SR  OSCPUSaveSR(void);

void       OSCPURestoreSR(OS_CPU_SR cpu_sr);

#endif
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L14.2(9) The third way to implement OS_ENTER_CRITICAL() is to write a function that saves the sta-
tus register of the CPU in a variable.  OS_EXIT_CRITICAL() invokes another function to
restore the status register from the variable.  I didn’t include this code in the port, but, if you
are familiar with assembly language, you should be able to write this easily.  

L14.2(10) I recommend that you call the functions expected in OS_ENTER_CRITICAL() and
OS_EXIT_CRITICAL(): OSCPUSaveSR() and OSCPURestoreSR(), respectively.  You would
declare the code for these two functions in OS_CPU_A.ASM.

14.03.03 OS_CPU.H, Stack Growth
L14.2(11) The stack on an 80x86 processor grows from high to low memory, which means that

OS_STK_GROWTH must be set to 1.

14.03.04 OS_CPU.H, OS_TASK_SW()

L14.2(13) To switch context, OS_TASK_SW() needs to simulate an interrupt. The 80x86 provides
256 software interrupts to accomplish this. The interrupt service routine (ISR) (also
called the exception handler) must vector to the assembly-language function OSCtxSw()
(see OS_CPU_A.ASM). We thus need to ensure that the pointer at vector 0x80 points to
OSCtxSw().

L14.2(12) I tested the code on a PC, and I decided to use interrupt number 128 (0x80) because I found
it to be available. Actually, the original PC used interrupts 0x80 through 0xF0 for the
BASIC interpreter. Few, if any PCs, come with a BASIC interpreter built in anymore, so it
should be safe to use these vectors. Optionally, you can also use vectors 0x4B to 0x5B, 0x5D
to 0x66, or 0x68 to 0x6F. If you use this port on an embedded processor, such as the 80186,
you are most likely not as restricted in your choice of vectors.

14.03.05 OS_CPU.H, Tick Rate
The tick rate for an RTOS should generally be set between 10 and 100Hz. It is always preferable (but
not necessary) to set the tick rate to a round number. Unfortunately, on the PC, the default tick rate is
18.20648Hz, which is not what I would call a nice, round number. For this port, I decided to change the
tick rate of the PC from the standard 18.20648Hz to 200Hz (i.e., 5ms between ticks). There are three
reasons to do this:

1.  200Hz happens to be almost exactly 11 times faster than 18.20648Hz. The port needs to chain into 
DOS once every 11 ticks. In DOS, the tick handler is responsible for some system maintenance that 
is expected to happen every 54.93ms.

Listing 14.2 OS_CPU.H  (Continued)
#define  OS_STK_GROWTH        1                                             (11)

Listing 14.2 OS_CPU.H  (Continued)
#define  uCOS                 0x80                                          (12)

#define  OS_TASK_SW()         asm  INT   uCOS                               (13)
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2. It’s useful to have a 5.00ms-time resolution for time delays and timeouts. If you are running the 
example code on an 80386 PC, you might find the overhead of a 200Hz tick rate unacceptable. How-
ever, on today’s fast Pentium-class processors, a 200Hz tick rate is not likely to be a problem.  

3. Even if it’s possible to change the tick rate on a PC to be exactly 20Hz or even 100Hz, it would be 
difficult to chain into the DOS-tick handler at exactly 18.20648Hz.  That’s why I chose an exact 
multiple and thus had to choose 200Hz.  Of course, I could also have used 22 as a multiple and 
would have obtained 400Hz (2.5ms).  On a fast PC, you should have no problems running at this tick 
rate or even faster.

L14.2(14) This statement declares an 8-bit variable (OSTickDOSCtr) that keeps track of the number of
times the ticker is called. Every 11th time, the DOS-tick handler is called. OSTickDOSCtr is
used in OS_CPU_A.ASM and really only applies to a PC environment. You most likely would
not use this scheme if you designed an embedded system around a non-PC architecture,
because you would set the tick rate to the proper value in the first place.

14.03.06 OS_CPU.H, Floating-Point Emulation
As previously mentioned, the Borland compiler provides a floating-point emulation library.  However,
this library is non-reentrant.

L14.2(15) A function has been added to allow you to pre-condition the stack of a task in order to make
the Borland library think it only has one task and thus make the library reentrant. This func-
tion will be discussed in Section 14.04.02, “OSTaskStkInit_FPE_x86()”.

14.04  OS_CPU_C.C
A µC/OS-II port requires that you write ten fairly simple C functions:

µC/OS-II only requires OSTaskStkInit().   The other nine functions must be declared but don’t need to
contain any code. In the case of this port, I did just that. The #define constant OS_CPU_HOOKS_EN (see
OS_CFG.H) should be set to 1.

Listing 14.2 OS_CPU.H  (Continued)
OS_CPU_EXT  INT8U  OSTickDOSCtr;                              (14)

Listing 14.2 OS_CPU.H  (Continued)
void       OSTaskStkInit_FPE_x86(OS_STK **pptos, OS_STK **ppbos, INT32U *psize);    (15)

OSTaskStkInit() OSTaskStatHook()

OSTaskCreateHook() OSTimeTickHook()

OSTaskDelHook() OSInitHookBegin()

OSTaskSwHook() OSInitHookEnd()

OSTaskIdleHook() OSTCBInitHook()
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14.04.01  OSTaskStkInit()
This function is called by OSTaskCreate() and OSTaskCreateExt() to initialize the stack frame of a
task so that it looks as if an interrupt has just occurred and that all processor registers have been pushed
onto it. Figure 14.3 shows what OSTaskStkInit() puts on the stack of the task being created. Note that
the diagram doesn’t show the stack frame of the code calling OSTaskStkInit() but rather the stack
frame of the task being created.

Figure 14.3 Stack frame initialization with pdata passed
on the stack.

When you create a task, you pass the start address of the task (task), a pointer (pdata), the task’s
top-of-stack (ptos), and the task’s priority (prio) to OSTaskCreate() or OSTaskCreateExt().
OSTaskCreateExt() requires additional arguments, but these are irrelevant in discussing

PSW = 0x0202
SEG task
OFF task

AX = 0xAAAA

BX = 0xBBBB

CX = 0xCCCC
DX = 0xDDDD

SI = 0x2222
DI = 0x3333

BP = 0x1111
SP = 0x0000 

ES = 0x4444
DS = Current DS

LOW MEMORY

HIGH MEMORY

Simulate PUSH ES
Simulate PUSH DS

Simulate PUSHA

Simulate Interrupt

Stack Growth

SEG pdata
OFF pdata
SEG task
OFF task

Simulate call to task

Top-of-stack

ptos
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OSTaskStkInit(). To properly initialize the stack frame, OSTaskStkInit() (Listing 14.3) requires
only the first three arguments just mentioned (i.e., task, pdata, and ptos).

L14.3(1) OSTaskStkInit() creates and initializes a local pointer to 16-bit elements because stack
entries are 16-bits wide on the 80x86. Note that µC/OS-II requires that the pointer ptos
points to an empty stack entry.

L14.3(2) The Borland C compiler passes the argument pdata on the stack instead of registers.
Therefore, pdata is placed on the stack frame with the offset register and segment in the
order shown.

Listing 14.3 OS_CPU_C.C, OSTaskStkInit(). 
OS_STK  *OSTaskStkInit (void  (*task)(void *pd), 

                        void   *pdata, 

                        OS_STK *ptos, 

                        INT16U  opt)

{

    INT16U *stk;

    opt    = opt;                           

    stk    = (INT16U *)ptos;                                                 (1)

    *stk-- = (INT16U)FP_SEG(pdata);                                          (2)

    *stk-- = (INT16U)FP_OFF(pdata);         

    *stk-- = (INT16U)FP_SEG(task);                                           (3)

    *stk-- = (INT16U)FP_OFF(task);

    *stk-- = (INT16U)0x0202;                                                 (4)

    *stk-- = (INT16U)FP_SEG(task);

    *stk-- = (INT16U)FP_OFF(task);

    *stk-- = (INT16U)0xAAAA;                                                 (5)

    *stk-- = (INT16U)0xCCCC;                

    *stk-- = (INT16U)0xDDDD;                

    *stk-- = (INT16U)0xBBBB;                

    *stk-- = (INT16U)0x0000;                

    *stk-- = (INT16U)0x1111;                

    *stk-- = (INT16U)0x2222;                

    *stk-- = (INT16U)0x3333;                

    *stk-- = (INT16U)0x4444;                

    *stk   = _DS;                                                             (6)

    return ((OS_STK *)stk);                                                   (7)

}
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L14.3(3) The address of your task is placed on the stack next. In theory, this address should be the
return address of your task. However, in µC/OS-II, a task must never return, so what is
placed here is not really critical.

L14.3(4) The status word (SW) and the task address are placed on the stack to simulate the behavior
of the processor in response to an interrupt. The SW register is initialized to 0x0202, which
allows the task to have interrupts enabled when it starts. You can in fact start all your tasks
with interrupts disabled by forcing SW to 0x0002 instead. µC/OS-II contains no options to
selectively enable interrupts upon startup for some tasks and disable interrupts upon task
startup for others. In other words, either all tasks have interrupts disabled upon startup or
all tasks have them disabled. You could, however, overcome this limitation by passing the
desired interrupt-startup state of a task by using the pdata or the opt arguments for tasks
created with OSTaskCreateExt().  However, the latter is not currently implemented. If you
chose to have interrupts disabled, each task needs to enable them when they execute. In this
case, you also have to modify the code for OS_TaskIdle() and OS_TaskStat() to enable
interrupts in those functions. If you don’t, your application crashes! I thus recommend that
you leave SW initialized to 0x0202 and have interrupts enabled when the task starts.

L14.3(5) The remaining registers are placed on the stack to simulate the PUSHA, PUSH ES, and PUSH
DS instructions, which are assumed to be found at the beginning of every ISR. Note that the
AX, BX, CX, DX, SP, BP, SI, and DI registers are placed to satisfy the order of the PUSHA
instruction. If you port this code to a ‘plain’ 8086 processor, you may want to simulate the
PUSHA instruction or place the registers in a neater order. You should also note that each reg-
ister has a unique value instead of all zeros, which is useful for debugging.

L14.3(6) Also, the Borland compiler supports pseudo-registers (i.e., the _DS keyword notifies the
compiler to obtain the value of the DS register), which in this case is used to copy the cur-
rent value of the DS register to the simulated stack frame.

L14.3(7) After the task is completed, OSTaskStkInit() returns the address of the new
top-of-stack. OSTaskCreate() or OSTaskCreateExt() takes this address and saves it in
the task’s OS_TCB.

14.04.02  OSTaskStkInit_FPE_x86()
When floating-point emulation is enabled (see the Borland documentation), the stack of the
Borland-compiled program is organized as shown in Figure 14.3. The compiler assumes that the appli-
cation runs in a single-threaded (i.e., tasking) environment.
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Figure 14.4 Borland floating-point emulation stack.

The Borland C Floating-Point Emulation (FPE) library assumes that about 300 bytes starting at
SS:0x0000 are reserved to hold floating-point emulation variables.  As far as I can tell, this information
applies to the large-memory model only. To accommodate this feature, a special function
[OSTaskStkInit_FPE_x86()] must be called prior to calling either OSTaskCreate() or
OSTaskCreateExt() in order to properly initialize the stack frame of each task that needs to perform
floating-point operations.  This function applies to Borland v3.x and v4.5x compilers, and thus
OSTaskStkInit_FPE_x86() is most likely not included in a port using a different compiler.

The floating-point emulation library stores its data within the reserved space in relation to the cur-
rent SS register value, assuming that some space starting from SS up (from SS:0x0000 up) is reserved
for floating-point operations.

µCOS-II’s task stacks are generally allocated statically as shown

When a task is created by µCOS-II, the highest-table address of the stack is passed to OSTaskCreate()
(or OSTaskCreateExt()) as shown

The stack of Task1() starts at DS:&Task1Stk[TASK_STK_SIZE-1] while the stack  of Task2() starts
at DS:&Task2Stk[TASK_STK_SIZE-1]. After µC/OS-II performs the initialization, the task’s
top-of-stack (TOS) is saved in the task’s OS_TCB.

The stack of the two tasks created from the previous code is shown in Figure 14.5.  As can be seen,
both tasks are part of the same segment, and, more importantly, they share the same segment base

OS_STK Task1Stk[TASK_STK_SIZE]; /* stack table for task 1 */

OS_TSK Task2Stk[TASK_STK_SIZE]; /* stack table for task 2 */

OSTaskCreate(Task1, (void*)0, &Task1Stk[TASK_STK_SIZE-1], prio1);

OSTaskCreate(Task2, (void*)0, &Task2Stk[TASK_STK_SIZE-1], prio2);

High Memory

Low Memory

SS:0000

DS:SP

The bottom of the stack is used
by the floating-point emulation
library.

&TaskStk[TASK_STK_SIZE-1]

TaskStk[]

DS:0000

On the 80x86, the stack 
grows from High-to-Low
memory addresses.
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because both stacks are allocated from the same data segment. When µC/OS-II loads a task during a
context switch, it sets the SS register to the value of the DS register of the stack.  This causes a problem
because both tasks have to share the same floating-point emulation variables!

Figure 14.5 Borland floating-point emulation stack.

The beginning of the data segment is overwritten with the floating-point emulation library even if we
were to use a semaphore to guard access to the region. Protecting this resource with a semaphore allows
exclusive access to the floating-point variables, but it does not protect the data segment from being over-
writen.  Even a single µCOS-II task using floating-point variables overwrites the data segment!  Further
system behavior depends on what data is overwritten, and typically data-segment overwriting crashes
the system.

A similar situation occurs when the stacks are allocated from the heap, because we don’t know what
part of memory is being overwritten.  Typically, the heap is corrupted because the floating-point emula-
tion library overwrites the header of the heap-allocated block.

To fix this problem, the function OSTaskStkInit_FPE_x86(), shown in Listing 14.4, needs to be
called prior to creating a task.  This function basically normalizes the stack so that every stack starts at
SS:0x0000, and the function reserves and properly initializes the floating-point emulation variables for
the task being created.

Listing 14.4 OS_CPU_C.C, 
OSTaskStkInit_FPE_x86(). 

void  OSTaskStkInit_FPE_x86 (OS_STK **pptos, 

                             OS_STK **ppbos, 

                             INT32U  *psize)

{

    INT32U   lin_tos;                                 

    INT32U   lin_bos;                                 

Task2Stk[]

Task1Stk[]

&Task2Stk[TASK_STK_SIZE-1]

&Task2Stk[TASK_STK_SIZE-1]

High Memory

Low Memory

DS

DS:SP

DS:SP

The beginning of the data segment
is overwritten by Borland's FPE
library because SS is initialized with
the segment value of the task's stack
segment, which is DS.
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As can be seen from the code, you need to pass three arguments to OSTaskStkInit_FPE_x86():

pptos is a pointer to the task’s top-of-stack (TOS) pointer (a pointer to a pointer).  The task’s TOS
is passed to OSTaskCreate() or OSTaskCreateExt() when you create a task.  The stack is
allocated from the data space and consists of a value for the DS register and an offset from
this segment register.  Because OSTaskStkInit_FPE_x86() normalizes the TOS, a pointer
to the initial TOS is passed to this function so that it can be altered. 

ppbos is a pointer to the task’s bottom-of-stack (BOS) pointer (a pointer to a pointer). The task’s
BOS is not passed to OSTaskCreate(); however, it is passed to OSTaskCreateExt(). In
other words, ppbos is necessary for OSTaskCreateExt(). The bottom of this stack is gen-
erally not located at DS:0000 but instead, at some offset from the DS register. Because
OSTaskStkInit_FPE_x86() normalizes the BOS, a pointer to the initial BOS is passed to
this function so that it can be altered.

psize is a pointer to a variable that contains the size of the stack. The task’s size is not needed
by OSTaskCreate(), but the size is needed for OSTaskCreateExt(). Because
OSTaskStkInit_FPE_x86() reserves storage for the floating-point emulation variables, the
available stack size is actually altered by this function, which is why a pointer to the size is
passed.  You must ensure that you pass OSTaskStkInit_FPE_x86() a stack large enough to
hold the floating-point emulation variables plus the anticipated stack space needed by your
application task.

    INT16U   seg;

    INT16U   off;

    INT32U   bytes;

    seg      = FP_SEG(*pptos);                                               (1)

    off      = FP_OFF(*pptos);

    lin_tos  = ((INT32U)seg << 4) + (INT32U)off;                             (2)

    bytes    = *psize * sizeof(OS_STK);                                      (3)

    lin_bos  = (lin_tos - bytes + 15) & 0xFFFFFFF0L;                         (4)

    

    seg      = (INT16U)(lin_bos >> 4);                                       (5)

    *ppbos   = (OS_STK *)MK_FP(seg, 0x0000);                                 (6)

    memcpy(*ppbos, MK_FP(_SS, 0), 384);                                      (7)

    bytes    = bytes - 16;                                                   (8)

    *pptos   = (OS_STK *)MK_FP(seg, (INT16U)bytes);                          (9)

    *ppbos   = (OS_STK *)MK_FP(seg, 384);                                   (10)

    bytes    = bytes - 384;                                                 (11)

    *psize   = bytes / sizeof(OS_STK);                                      (12)

}

Listing 14.4 OS_CPU_C.C, 
OSTaskStkInit_FPE_x86(). (Continued)



352 Chapter 14: 80x86 Port
L14.4(1) OSTaskStkInit_FPE_x86() starts by decomposing the TOS into its segment and offset
components.

L14.4(2) We then convert the address of the TOS into a linear address.  Remember that on the 80x86
(real mode), the segment is multiplied by 16 and added to the offset to form the actual
memory address.

L14.4(3) We then determine the size of the stack (in number of bytes).  Remember that with
µC/OS-II, you must declare a stack using the OS_STK data type, which can represent an
8-bit wide stack, a 16-bit wide stack, or a 32-bit wide stack.  For the Borland compiler, the
stack width is 16 bits, but it’s always better to use the C operator sizeof().

L14.4(4) The linear address for the BOS is then determined by subtracting the number of bytes allo-
cated to the stack from the TOS address.  You should note that I added 15 bytes to the bot-
tom of the stack and ANDed it with 0xFFFFFFF0L so that I align the BOS on a paragraph
boundary (i.e., a 16-byte boundary).

L14.4(5) From the BOS’s linear address, we determine the new segment of the BOS.  

L14.4(6) A far pointer with an offset of 0x0000 is then created and assigned to the new BOS pointer.

L14.4(7) To initialize the floating-point emulation variables of the task’s stack, we can simply copy
the bottom of the calling task’s stack into the new stack. You should note that the calling
task must have also been created from a task that has it stack initialized with the float-
ing-point emulation variables.  Failure to do this can cause unpredictable results. The Bor-
land Floating-Point Emulation (FPE) library assumes that about 300 bytes, starting at
SS:0x0000, are reserved to hold floating-point emulation variables. This information
applies to the ‘large-memory model’ only. Note that I decided to copy 384 bytes (0x0180).
It turns out that you don’t need to copy this many bytes, but I find it safe to add a little
extra in case of expansion.  Your task stack, therefore, must have at least 384 bytes plus
the anticipated stack requirements of your task (including ISR nesting, of course). Note
that _SS is a Borland pseudo-register that allows the code to obtain the current value of the
CPU’s stack segment register.  Also, I decided to use the ANSI function memcpy() because
Borland most likely optimized this function.

L14.4(8) The next step to to determine the normalized address of the TOS.  We first need to subtract
16 bytes because we aligned the stack on a page boundary.  If I could guarantee that you
would always align your stacks to a paragraph boundary, I would not have to do this.

L14.4(9) The new TOS is determined by making a far pointer using the new segment [found in
L14.4(6)] and the new size of the stack (aligned to a paragraph).

L14.4(10) The final step is to move the BOS up by 384 bytes in case the BOS is used to perform stack
checking [i.e., if your application calls OSTaskStkChk()].

L14.4(11)

L14.4(12) If you use stack checking, µC/OS-II needs to know the size of the new stack.  Of course, we
don’t want to start the stack check from the bottom of the original stack but in fact the new
stack.

Figure 14.6 shows what OSTaskStkInit_FPE_x86() does. Note that paragraph alignment is not
shown.
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Figure 14.6 Stack normalization by OSTaskStkInit_FPE_x86().

You use OSTaskStkInit_FPE_x86(), as shown in Listing 14.5, which contains an example with
both OSTaskCreate() and OSTaskCreateExt().  The code shows that if your task is to do float-
ing-point math, OSTaskStkInit_FPE_x86() must be called before calling either OSTaskCreate() or
OSTaskCreateExt() in order to initialize the task’s stack as just described.  The returned pointers (ptos
and pbos) must be used in the task-creation call. Note that pbos is passed to OSTaskCreateExt() as the
new bottom of stack.  You should note that if you were to call OSTaskStkChk() [only if the task is cre-
ated with OSTaskCreateExt()] to determine the size of the task’s stack at run time, then
OSTaskStkChk() would report that the stack contains 384 bytes less than it’s original size (see the after
case of Figure 14.6 )!

Listing 14.5 OS_CPU_C.C, using 
OSTaskStkInit_FPE_x86(). 

OS_STK Task1Stk[1000];

OS_STK Task2Stk[1000];

High Memory

Low Memory

DS:????

The bottom of the stack is
reserved for the floating-point
emulation library.

ptos

pbos

size

size - 384

ptos

pbos

SS:0000

&TaskStk[TASK_STK_SIZE-1]

DS:????-size

AFTERBEFORE
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void main (void)

{

    OS_STK *ptos;

    OS_STK *pbos;

    INT32U  size;

    OSInit();

       .

       .

    ptos  = &Task1Stk[999];

    pbos  = &Task1Stk[0];

    size  = 1000;

    OSTaskStkInit_FPE_x86(&ptos, &pbos, &size);
    OSTaskCreate(Task1, 

                 (void *)0, 

                 ptos, 

                 10);

       .

       .

    ptos  = &Task2Stk[999];

    pbos  = &Task2Stk[0];

    size  = 1000;

    OSTaskStkInit_FPE_x86(&ptos, &pbos, &size);
    OSTaskCreateExt(Task2, 

                    (void *)0, 

                    ptos, 

                    11,

                    11,

                    pbos,

                    size,

                    (void *)0,

                    OS_TASK_OPT_SAVE_FP);

       .

       .

    OSStart();

}

Listing 14.5 OS_CPU_C.C, using 
OSTaskStkInit_FPE_x86(). (Continued)
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You should be careful that your code doesn’t generate any floating-point exceptions (e.g., divide by
zero) because the floating-point library does not work properly under these circumstances.  Run-time
exceptions can, however, be avoided by adding range-testing code.

14.04.03  OSTaskCreateHook()
As previously mentioned, OS_CPU_C.C does not define code for this function.  In other words, no addi-
tional work is done by the port when a task is created.  The assignment of ptcb to ptcb is done so that
the compiler doesn’t complain about OSTaskCreateHook() not doing anything with the argument.

14.04.04  OSTaskDelHook()
As previously mentioned, OS_CPU_C.C does not define code for this function.  In other words, no addi-
tional work is done by the port when a task is deleted.  The assignment of ptcb to ptcb is again done so
that the compiler doesn’t complain about OSTaskDelHook() not doing anything with the argument.

14.04.05  OSTaskSwHook()
OS_CPU_C.C doesn’t do anything in this function.  You should note that I added the skeleton of the code
you need if you were to actually do something in OSTaskSwHook().

Listing 14.6 OS_CPU_C.C, OSTaskCreateHook().
void  OSTaskCreateHook (OS_TCB *ptcb)

{

    ptcb = ptcb;

}

Listing 14.7 OS_CPU_C.C, OSTaskDelHook().
void  OSTaskDelHook (OS_TCB *ptcb)

{

    ptcb = ptcb;

}

Listing 14.8 OS_CPU_C.C, OSTaskSwHook().
void  OSTaskSwHook (void)

{

#if 0

    if (OSRunning == TRUE) {

        /* Save for task being ‘switched-out’ */

    }

    /* Code for task being ‘switched-in’      */

#endif

}
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14.04.06  OSTaskIdleHook()
OS_CPU_C.C doesn’t do anything in this function.

14.04.07  OSTaskStatHook()
OS_CPU_C.C doesn’t do anything in this function. See Example 3 in Chapter 1 for an example on what
you can do with this function.

14.04.08  OSTimeTickHook()
OS_CPU_C.C doesn’t do anything in this function.

14.04.09  OSInitHookBegin()
OS_CPU_C.C doesn’t do anything in this function.

Listing 14.9 OS_CPU_C.C, OSTaskIdleHook().
void  OSTaskIdleHook (void)

{

}

Listing 14.10 OS_CPU_C.C, OSTaskStatHook().
void  OSTaskStatHook (void)

{

}

Listing 14.11 OS_CPU_C.C, OSTimeTickHook().
void  OSTimeTickHook (void)

{

}

Listing 14.12 OS_CPU_C.C, OSInitHookBegin().
void  OSInitHookBegin (void)

{

}
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14.04.10 OSInitHookEnd() 

OS_CPU_C.C doesn’t do anything in this function.

14.04.11 OSTCBInitHook() 

OS_CPU_C.C doesn’t do anything in this function.

14.05 OS_CPU_A.ASM 
A µC/OS-II port requires that you write four assembly-language functions:

OSStartHighRdy()
OSCtxSw()
OSIntCtxSw()
OSTickISR()

14.05.01  OSStartHighRdy()
This function is called by OSStart() to start the highest priority task ready to run. However, before you
can call OSStart(), you must call OSInit() and create at least one task [see OSTaskCreate() and
OSTaskCreateExt()]. OSStart() sets up OSTCBHighRdy so that it points to the TCB of the task with
the highest priority. Figure 14.7 shows the stack frame for an 80x86 real-mode task created by either
OSTaskCreate() or OSTaskCreateExt() just before OSStart() calls OSStartHighRdy(). The code
for OSStartHighRdy() is shown in Listing 14.5.

Listing 14.13 OS_CPU_C.C, OSInitHookEnd().
void  OSInitHookEnd (void)

{

}

Listing 14.14 OS_CPU_C.C, OSTCBInitHook().
void  OSTCBInitHook (void)
{
}

Listing 14.15 OSStartHighRdy(). 
_OSStartHighRdy  PROC FAR

            MOV    AX, SEG _OSTCBHighRdy          

            MOV    DS, AX                         

;

            CALL   FAR PTR _OSTaskSwHook                                     (1)

;

            MOV    AL, 1                                                     (2)
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Figure 14.7 80x86 stack frame when task is created.  

L14.15(1) As mentioned in Chapter 13, OSStartHighRdy() must call OSTaskSwHook() when it starts.
Remember that your OSTaskSwHook() function must check the state of OSRunning (which

            MOV    BYTE PTR DS:_OSRunning, AL     

;

            LES    BX, DWORD PTR DS:_OSTCBHighRdy                            (3)

            MOV    SS, ES:[BX+2]                  

            MOV    SP, ES:[BX+0]                  

;

            POP    DS                                                        (4)

            POP    ES                                            

            POPA                                                 

;

            IRET                                                             (5)

_OSStartHighRdy  ENDP

Listing 14.15 OSStartHighRdy(). (Continued)
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should be FALSE at this point) so that the function only performs a restore-context operation
instead of a save-and-restore-context operation.

L14.15(2) OSStartHighRdy() then sets OSRunning to TRUE so that subsequent calls to
OSTaskSwHook() are able to perform both save and restore operations.  Because the code is
done in assembly language, there is no way to get the exact value of TRUE from the C com-
piler.  I’m thus assuming that TRUE is 1.

L14.15(3) OSStartHighRdy() then retrieves and loads the stack pointer from the task’s OS_TCB. As
mentioned before, I decided to store the stack pointer at the beginning of the TCB (i.e., its
OS_TCB) to make it easier to access the pointer from assembly language.

L14.15(4) OSStartHighRdy() then restores the contents of all the CPU-integer registers from the
task’s stack.

L14.15(5) The IRET instruction is executed in order to perform a return from interrupt.  Remember
that the stack frame of the task was created so that it looks as if an interrupt has occurred
and all the CPU registers has been pushed onto the task’s stack.  The IRET instruction pulls
the task address and places it into the CS:IP registers, followed by the value (called status
word or flags) to load into the SW register.

As seen in Figure 14.7, upon executing the IRET instruction, the stack pointer (SS:SP) points to the
return address of the task and looks as if the task were called by a normal function. SS:SP+4 points to
the argument pdata, which is passed to the task.  In other words, your task does not know whether it
was called by OSStartHighRdy() or by any other function!

14.05.02  OSCtxSw()
A task-level context switch is accomplished on the 80x86 processor by executing a

software-interrupt instruction. The ISR must vector to OSCtxSw(). The sequence of events that leads
µC/OS-II to vector to OSCtxSw() begins when the current task calls a service provided by µC/OS-II,
which causes a higher priority task to be ready to run. At the end of the service call, µC/OS-II calls the
function OS_Sched(), which concludes that the current task is no longer the most important task to run.
OS_Sched() loads the address of the OS_TCB of the highest priority task into OSTCBHighRdy and then
executes the software-interrupt instruction by invoking the macro OS_TASK_SW(). Note that the variable
OSTCBCur already contains a pointer to the current task’s OS_TCB. The code for OSCtxSw() is shown in
Listing 14.16. Figure 14.8 shows the stack frames of the task being suspended and the task being
resumed.

Listing 14.16 OSCtxSw(). 

_OSCtxSw    PROC   FAR                                                       (1)

;

            PUSHA                                                            (2)

            PUSH   ES                              

            PUSH   DS                              

;

            MOV    AX, SEG _OSTCBCur               

            MOV    DS, AX                          

;
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F14.8(1)

L14.16(1) On the 80x86 processor, the software-interrupt instruction forces the SW register to be
pushed onto the current task’s stack, followed by the return address (segment and then off-
set) of the task that executed the INT instruction [i.e., the task that invoked OS_TASK_SW()].

F14.8(2)

L14.16(2) The remaining CPU registers of the task to suspend are saved onto the current task’s stack.

F14.8(3)

L14.16(3) The pointer to the new stack frame is saved into the task’s OS_TCB. This pointer is com-
posed of the stack segment (SS register) and the stack pointer (SP register). The OS_TCB in
µC/OS-II is organized such that the stack pointer is placed at the beginning of the OS_TCB
structure to make it easier to save and restore the stack pointer using assembly language.

L14.16(4) The user-definable task-switch hook OSTaskSwHook() is then called. Note that when
OSTaskSwHook() is called, OSTCBCur points to the current task’s OS_TCB, while
OSTCBHighRdy points to the new task’s OS_TCB. You can thus access each task’s OS_TCB

            LES    BX, DWORD PTR DS:_OSTCBCur                                (3)

            MOV    ES:[BX+2], SS                   

            MOV    ES:[BX+0], SP                   

;

            CALL   FAR PTR _OSTaskSwHook                                     (4)

;

            MOV    AX, WORD PTR DS:_OSTCBHighRdy+2                           (5)

            MOV    DX, WORD PTR DS:_OSTCBHighRdy   

            MOV    WORD PTR DS:_OSTCBCur+2, AX     

            MOV    WORD PTR DS:_OSTCBCur, DX       

;

            MOV    AL, BYTE PTR DS:_OSPrioHighRdy                            (6)

            MOV    BYTE PTR DS:_OSPrioCur, AL      

;

            LES    BX, DWORD PTR DS:_OSTCBHighRdy                            (7)

            MOV    SS, ES:[BX+2]                   

            MOV    SP, ES:[BX]                     

;

            POP    DS                                                        (8)

            POP    ES                              

            POPA                                   

;

            IRET                                                             (9)

;

_OSCtxSw    ENDP

Listing 14.16 OSCtxSw(). (Continued)
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from OSTaskSwHook(). If you never intend to use the context-switch hook, you can com-
ment out the call and save yourself a few clock cycles during the context switch.  In other
words, there is no point in going through the overhead of calling and returning from a fun-
tion if your port doesn’t use OSTaskSwHook().  As a general rule, however, I like to make
the call to be consistent between ports.

L14.16(5) Upon returning from OSTaskSwHook(), OSTCBHighRdy is copied to OSTCBCur because the
new task is now also the current task.

L14.16(6) Also, OSPrioHighRdy is copied to OSPrioCur for the same reason.

F14.8(4)

L14.16(7) At this point, OSCtxSw() loads the processor’s registers with the new task’s context. This
action is done by retrieving the SS and SP registers from the new task’s OS_TCB.

F14.8(5)

L14.16(8) The remaining CPU registers are pulled from the new task’s stack.

F14.8(6)

L14.16(9) An IRET instruction is executed in order to load the new task’s program counter and status
word.  After this instruction, the processor resumes execution of the new task.

Figure 14.8 80x86 stack frames during a task-level context switch.

Note that interrupts are disabled during OSCtxSw() and also during execution of the user-definable
function OSTaskSwHook().
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Note: You can see an animation of a context switch for the Intel 80x86 processor by visiting
www.uCOS-II.com.

14.05.03  OSIntCtxSw()
OSIntCtxSw() is called by OSIntExit() to perform a context switch from an ISR. Because
OSIntCtxSw() is called from an ISR, it is assumed that all the processor registers are already properly
saved onto the interrupted task’s stack.

The code shown in Listing 14.17 is identical to OSCtxSw(), except for the fact that there is no need
to save the registers (i.e., no PUSHA, PUSH ES, or PUSH DS) onto the stack because it is assumed that the
beginning of the ISR has already done that.  Also, it is assumed that the stack pointer is saved into the
task’s OS_TCB by the ISR.  Figure 14.9 shows the context-switch process, from  OSIntCtxSw()’s point
of view.

To understand the difference, let’s assume that the processor receives an interrupt.  Let’s also sup-
pose that interrupts are enabled.  The processor completes the current instruction and initiates an inter-
rupt-handling procedure.

F14.9(1) The 80x86 automatically pushes the processor’s SW register, followed by the return
address of the interrupted task, onto the stack. The CPU then vectors to the proper ISR.
µC/OS-II requires that your ISR begin by saving the rest of the processor registers. After
the registers are saved, µC/OS-II requires that you also save the contents of the stack
pointer in the task’s OS_TCB.

Your ISR then needs either to call OSIntEnter() or to increment the global variable OSIntNesting
by one. At this point, we can assume that the task is suspended and that we could, if needed, switch to a
different task.

The ISR can now start servicing the interrupting device and possibly make a higher priority task
ready. This action occurs if the ISR sends a message to a task by calling OSFlagPost(), OSMboxPost(),
OSMboxPostOpt(), OSQPostFront(), OSQPost(), or OSQPostOpt().  A higher priority task can also be
resumed if the ISR calls OSTaskResume(), OSTimeTick(), or OSTimeDlyResume().

Assume that a higher priority task is made ready to run by the ISR. µC/OS-II requires that an ISR
calls OSIntExit() when it has finished servicing the interrupting device. OSIntExit() basically tells
µC/OS-II that it’s time to return to task-level code if all nested interrupts have completed. In other
words, when OSIntNesting is decremented to 0 by OSIntExit(), OSIntExit() returns to task-level
code.

When OSIntExit() executes, it notices that the interrupted task is no longer the task that needs to
run because a higher priority task is now ready.  In this case, the pointer OSTCBHighRdy is made to point
to the new task’s OS_TCB, and OSIntExit() calls OSIntCtxSw() to perform the context switch.

Listing 14.17 OSIntCtxSw(). 
_OSIntCtxSw PROC   FAR

;

            CALL   FAR PTR _OSTaskSwHook                                     (1)

;

            MOV    AX, SEG _OSTCBCur               

            MOV    DS, AX                          
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L14.17(1) The first thing OSIntCtxSw() does is call the user-definable task-switch hook
OSTaskSwHook(). Note that when OSTaskSwHook() is called, OSTCBCur points to the cur-
rent task’s OS_TCB, while OSTCBHighRdy points to the new task’s OS_TCB. You can thus
access each task’s OS_TCB from OSTaskSwHook(). Again, if you never intend to use the
context-switch hook, you can comment out the call and save yourself a few clock cycles
during the context switch.

L14.17(2) Upon returning from OSTaskSwHook(), OSTCBHighRdy is copied to OSTCBCur because the
new task is now also the current task.

L14.17(3) OSPrioHighRdy is also copied to OSPrioCur for the same reason.

F14.9(2)

L14.17(4) At this point, OSCtxSw() loads the processor’s registers with the new task’s context. This
action is done by retrieving the SS and SP registers from the new task’s OS_TCB.

F14.9(3)

L14.17(5) The remaining CPU registers are pulled from the stack.

F14.9(4)

L14.17(6) An IRET instruction is executed in order to load the new task’s program counter and status
word.  After this instruction, the processor resumes execution of the new task.

Note that interrupts are disabled during OSIntCtxSw() and also during execution of the user-defin-
able function OSTaskSwHook().

;

            MOV    AX, WORD PTR DS:_OSTCBHighRdy+2                           (2)

            MOV    DX, WORD PTR DS:_OSTCBHighRdy   

            MOV    WORD PTR DS:_OSTCBCur+2, AX     

            MOV    WORD PTR DS:_OSTCBCur, DX       

;

            MOV    AL, BYTE PTR DS:_OSPrioHighRdy                            (3)

            MOV    BYTE PTR DS:_OSPrioCur, AL

;

            LES    BX, DWORD PTR DS:_OSTCBHighRdy                            (4)

            MOV    SS, ES:[BX+2]                   

            MOV    SP, ES:[BX]                     

;

            POP    DS                                                        (5)

            POP    ES                              

            POPA                                   

;

            IRET                                                             (6)

;

_OSIntCtxSw ENDP

Listing 14.17 OSIntCtxSw(). (Continued)
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Figure 14.9 80x86 stack frames during an interrupt-level context 
switch.

14.05.04  OSTickISR()
As mentioned in Section 14.03.05, “OS_CPU.H, Tick Rate”, the tick rate of an RTOS should be set
between 10 and 100Hz. On the PC, the ticker occurs every 54.93ms (18.20648Hz) and is obtained by a
hardware timer that interrupts the CPU. Recall that I reprogrammed the tick rate to 200Hz. The ticker on
the PC is assigned to vector 0x08, but µC/OS-II redefined it so that it vectors to OSTickISR() instead.
Because of this change, the PC’s tick handler is saved [see PC.C, PC_DOSSaveReturn()] in vector 129
(0x81). To satisfy DOS, however, the PC’s handler is called every 54.93ms (described shortly). Figure
14.10 shows the contents of the interrupt-vector table (IVT) before and after installing µC/OS-II.

With µC/OS-II, it is very important that you enable ticker interrupts after multitasking has started,
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Change the tick rate from 18.20648 to 200Hz

The tick handler on the PC is somewhat tricky, so I explain it using the pseudocode shown in Listing
14.18. This code would normally be written in assembly language.

L14.18(1) Like all µC/OS-II ISRs, all registers need to be saved onto the current task’s stack. 

L14.18(2) Upon entering an ISR, you need to tell µC/OS-II that you are starting an ISR by either
calling OSIntEnter() or directly incrementing OSIntNesting.  I like to increment
OSIntNesting directly because it’s faster. However, OSIntEnter() checks that you don’t
increment OSIntNesting beyond 255 and thus is safer if you nest your ISRs.

L14.18(3)

L14.18(4) If this ISR is the first nested ISR, you need to save the stack pointer into the current task’s
OS_TCB.

L14.18(5)

L14.18(6)

L14.18(7) Next, the counter OSTickDOSCtr is decremented, and, when it reaches 0, the DOS-ticker
handler is called, which happens every 54.93ms. 

L14.18(8) Ten times out of 11, however, a command is sent to the priority interrupt controller (PIC) to
clear the interrupt. Note that this action is unnecesary when the DOS ticker is called
because the DOS-tick handler directly clears the interrupt source.

Listing 14.18 Pseudocode for OSTickISR().
void  OSTickISR (void)

{

    Save all registers on the current task's stack;                          (1)

    OSIntNesting++;                                                          (2)

    if (OSIntNesting == 1) {                                                 (3)

        OSTCBCur->OSTCBStkPtr = SS:SP                                        (4)

    }

    OSTickDOSCtr--;                                                          (5)

    if (OSTickDOSCtr == 0) {                                                 (6)

        OSTickDOSCtr = 11;                                                   (7)

        INT 81H;     /* Interrupt will be cleared by DOS */

    } else {       

        Send EOI to PIC;                                                     (8)

    }

    OSTimeTick();                                                            (9)

    OSIntExit();                                                            (10)

    Restore all registers that were save on the current task's stack;       (11)

    Return from Interrupt;                                                  (12)

}
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L14.18(9) OSTickISR() then calls OSTimeTick() so that µC/OS-II can update all tasks waiting for
time to expire or pending for some event to occur, with a timeout.

L14.18(10) At the completion of all ISRs, OSIntExit() is called. If a higher priority task has been
made ready by this ISR (or any other nested ISRs) and this is the last nested ISR, then
OSIntExit() does not return to OSTickISR()! Instead, OSIntCtxSw() restores the proces-
sor’s context of the new task and issues an IRET instruction. If the ISR is not the last nested
ISR or the ISR did not cause a higher priority task to be ready, then OSIntExit() returns to
OSTickISR().

L14.18(11)

L14.18(12) If OSIntExit() returns, it’s because OSIntExit() didn’t find any higher priority task to
run, and thus the contents of the interrupt task’s processor registers are restored.  When the
IRET instruction is executed, the ISR returns to the interrupted task.

Figure 14.10 The PC interrupt-vector table (IVT).
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The actual code for OSTickISR() is shown in Listing 14.19.  The number in Listing 14.19 corre-
sponds to the same item in Listing 14.18.  You should note that the actual code in the file contains com-
ments.

Listing 14.19 OSTickISR(). 
_OSTickISR  PROC   FAR

;

            PUSHA                                                            (1)

            PUSH   ES

            PUSH   DS

;

            MOV    AX, SEG(_OSIntNesting)                                    (2)

            MOV    DS, AX

            INC    BYTE PTR DS:_OSIntNesting     

;

            CMP    BYTE PTR DS:_OSIntNesting, 1                              (3)

            JNE    SHORT _OSTickISR1             

            MOV    AX, SEG(_OSTCBCur)            

            MOV    DS, AX

            LES    BX, DWORD PTR DS:_OSTCBCur                                (4)

            MOV    ES:[BX+2], SS                 

            MOV    ES:[BX+0], SP                 

;

_OSTickISR1:

            MOV    AX, SEG(_OSTickDOSCtr)                                    (5)

            MOV    DS, AX

            DEC    BYTE PTR DS:_OSTickDOSCtr

            CMP    BYTE PTR DS:_OSTickDOSCtr, 0                              (6)

            JNE    SHORT _OSTickISR2             

;

            MOV    BYTE PTR DS:_OSTickDOSCtr, 11                             (7)

            INT    081H                          

            JMP    SHORT _OSTickISR3

_OSTickISR2:

            MOV    AL, 20H                                                   (8)

            MOV    DX, 20H                       

            OUT    DX, AL                        

;

_OSTickISR3:

            CALL   FAR PTR _OSTimeTick                                       (9)
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You can simplify OSTickISR() by not increasing the tick rate from 18.20648 to 200Hz, as shown in
the pseudocode in Listing 14.20.  The actual code is shown in Listing 14.21 and matches the same item
from Listing 14.20. This code is included so that you can model your ISRs after it.

L14.20(1) As with all µC/OS-II ISRs, all registers need to be saved onto the current task’s stack.

L14.20(2) Upon entering an ISR, you need to tell µC/OS-II that you are starting an ISR by either call-
ing OSIntEnter() or directly incrementing OSIntNesting. I like to increment
OSIntNesting directly because it’s faster.

L14.20(3)

L14.20(4) If this ISR is the first nested ISR, you need to save the stack pointer into the current task’s
OS_TCB.

L14.20(5) Next, the DOS-tick handler is called by issuing an INT 81H instruction (see the remapping
of the IVT, Figure 14.10). Note that you do not need to clear the interrupt because the DOS
ticker performs this action.

;

            CALL   FAR PTR _OSIntExit                                       (10)

;

            POP    DS                                                       (11)

            POP    ES

            POPA

;

            IRET                                                            (12)

;

_OSTickISR  ENDP

Listing 14.20 Pseudocode for 18.2Hz OSTickISR().
void OSTickISR (void)

{

    Save all registers on the current task's stack;                          (1)

    OSIntNesting++;                                                          (2)

    if (OSIntNesting == 1) {                                                 (3)

        OSTCBCur->OSTCBStkPtr = SS:SP                                        (4)

    }

    INT 81H;                                                                 (5)

    OSTimeTick();                                                            (6)

    OSIntExit();                                                             (7)

    Restore all registers that were save on the current task's stack;        (8)

    Return from Interrupt;                                                   (9)

}

Listing 14.19 OSTickISR(). (Continued)
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L14.20(6) Call OSTimeTick() so that µC/OS-II can update all tasks waiting for time to expire or
pending some event to occur with a timeout. If your ISR is not for the DOS tick, this place
is where you put the code to service your own interrupt.

L14.20(7) When you are done servicing the ISR, call OSIntExit(). If the ISR makes a higher priority
task ready to run, OSIntExit() does not return to this ISR but instead performs context
switch to the new, higher priority task.

L14.20(8) The processor registers are restored.

L14.20(9) The ISR returns to the interrupted source by executing an IRET instruction.

Note that you must not change the tick rate by calling PC_SetTickRate() if you are using this ver-
sion of the code. In other words, you must leave the tick rate alone.  You also have to change the config-
uration constant OS_TICKS_PER_SEC (see OS_CFG.H) from 200 to 18.  You should note that the tick rate
is not actually 18 but 18.20648. You need to be aware of this information, especially if you want to delay
a task for 10 seconds.  You would specify 10 * OS_TICKS_PER_SEC ticks, actually ends up being only
9.8866 seconds!

Listing 14.21 18.2Hz version of OSTickISR(). 
_OSTickISR  PROC   FAR

;

            PUSHA                                                            (1)

            PUSH   ES

            PUSH   DS

;

            MOV    AX, SEG(_OSIntNesting)                                    (2)

            MOV    DS, AX

            INC    BYTE PTR DS:_OSIntNesting     

;

            CMP    BYTE PTR DS:_OSIntNesting, 1                              (3)

            JNE    SHORT _OSTickISR1             

            MOV    AX, SEG(_OSTCBCur)            

            MOV    DS, AX

            LES    BX, DWORD PTR DS:_OSTCBCur                                (4)

            MOV    ES:[BX+2], SS                 

            MOV    ES:[BX+0], SP                 

;

_OSTickISR1:

            INT    081H                                                      (5)

;

            CALL   FAR PTR _OSTimeTick                                       (6)

;

            CALL   FAR PTR _OSIntExit                                        (7)

;
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14.06 Memory Usage
Table 14.3 shows the amount of memory (both code and data space) used by µC/OS-II, based on the
value of configuration constants. Data in this case means RAM, and code means ROM if µC/OS-II is
used in an embedded system. 

The spreadsheet is actually provided on the companion CD:
\SOFTWARE\uCOS-II\Ix86L\BC45\DOC\80x86L-ROM-RAM.XLS

You need Microsoft Excel for Office 2000 (or higher) to use this file. The spreadsheet allows you to
do what-if scenarios based on the options you select.  You can change the configuration values (in red)
and see how they affect µC/OS-II’s ROM and RAM usage on the 80x86.  For the ???_EN values, you
must use either 0 or 1.

I set up the Borland compiler to generate the fastest code. The number of bytes shown are not meant
to be accurate but are simply provided to give you a relative idea of how much code space each of the
µC/OS-II group of services requires. For example, if you don’t need message-queue services (OS_Q_EN
is set to 0), then you save between 1,900 and 2,200 bytes of code space.

The spreadsheet also shows you the difference in code size based on the value of OS_ARG_CHK_EN in
your OS_CFG.H. You don’t need to change the value of OS_ARG_CHK_EN to see the difference.

The Data column is not as straightforward. Notice that the stacks for both the idle task and the statis-
tics task have been set to 1,024 bytes (1KB) each. Based on your own requirements, these numbers
might be higher or lower. As a minimum, µC/OS-II requires about 3,500 bytes of RAM for µC/OS-II
internal data structures if you configure the maximum number of tasks (62 application tasks).

Table 14.4 shows how µC/OS-II can scale down the amount of memory required with most of the
services disabled. In this case, I allowed only 16 tasks with 20 priority levels (0 to 19).  Notice that the
code space is now between 2,400 and 2,700 bytes and that data space for µC/OS-II internals is only
about 500 bytes.  However, just about the only service you can use in your tasks is OSTimeDly()! Of
course you will still be able to do multitasking.

If you use an 80x86 processor, you will most likely not be too restricted with memory, and thus
µC/OS-II will most likely not be the largest user of memory.             

            POP    DS                                                        (8)

            POP    ES

            POPA

;

            IRET                                                             (9)

;

_OSTickISR  ENDP

Listing 14.21 18.2Hz version of OSTickISR(). (Continued)
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Table 14.3 Maximum µC/OS-II configuration. 

Configuration
Parameters

Value in
OS_
CFG.H

DATA
(bytes)

CODE (bytes)
OS_ARG_CHK_EN == 0

CODE (bytes)
OS_ARG_CHK_EN == 1

Delta 
CODE
(bytes)

Delta 
CODE

(%)

TOTAL: 5523 13048 14919 1871 14%
OS_MAX_EVENTS 10 164

OS_MAX_FLAGS 2 14

OS_MAX_MEM_PART 2 44

OS_MAX_QS 2 52

OS_MAX_TASKS 62 2,880

OS_LOWEST_PRIO 63 264

OS_TASK_IDLE_STK_SIZE 512 1,024

OS_TASK_STAT_EN 1 10 351 351

OS_TASK_STAT_STK_SIZE 512 1,024

OS_ARG_CHK_EN 1

OS_CPU_HOOKS_EN 1

MINIMUM 2,177 2,493 316

OS_FLAG_EN 1 2,174 2,539 82

OS_FLAG_WAIT_CLR_EN 1 108

OS_FLAG_ACCEPT_EN 1 41

OS_FLAG_DEL_EN 1 95

OS_FLAG_QUERY_EN 1 39

OS_MBOX_EN 1 958 1,185 55

OS_MBOX_ACCEPT_EN 1 23

OS_MBOX_DEL_EN 1 49

OS_MBOX_POST_EN 1 36

OS_MBOX_POST_OPT_EN 1 39

OS_MBOX_QUERY_EN 1 25



372 Chapter 14: 80x86 Port
OS_MEM_EN 1 689 838 123

OS_MEM_QUERY_EN 1 26

OS_MUTEX_EN 1 1,596 1,792 83

OS_MUTEX_ACCEPT_EN 1 39

OS_MUTEX_DEL_EN 1 47

OS_MUTEX_QUERY_EN 1 27

OS_Q_EN 1 1,917 2,206 45

OS_Q_ACCEPT_EN 1 23

OS_Q_DEL_EN 1 49

OS_Q_FLUSH_EN 1 25

OS_Q_POST_EN 1 40

OS_Q_POST_FRONT_EN 1 40

OS_Q_POST_OPT_EN 1 40

OS_Q_QUERY_EN 1 27

OS_SEM_EN 1 707 864 62

OS_SEM_ACCEPT_EN 1 21

OS_SEM_DEL_EN 1 49

OS_SEM_QUERY_EN 1 25

OS_TASK_CHANGE_PRIO_EN 1 444 466 22

OS_TASK_CREATE_EN 1 185 196 11

OS_TASK_CREATE_EXT_EN 1 441 467 26

OS_TASK_DEL_EN 1 527 578 51

OS_TASK_SUSPEND_EN 1 264 300 36

OS_TASK_QUERY_EN 1 87 103 16

OS_TIME_DLY_HMSM_EN 1 248 248

OS_TIME_DLY_RESUME_EN 1 122 132 10

OS_TIME_GET_SET_EN 1 59 59

Table 14.3 Maximum µC/OS-II configuration. (Continued)

Configuration
Parameters

Value in
OS_
CFG.H

DATA
(bytes)

CODE (bytes)
OS_ARG_CHK_EN == 0

CODE (bytes)
OS_ARG_CHK_EN == 1

Delta 
CODE
(bytes)

Delta 
CODE

(%)
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OS_SCHED_LOCK_EN 1 102 102

µC/OS-II Internals 47

Total Application 
Stacks

0

Total Application 
RAM

0

Table 14.4 Minimum µC/OS-II configuration. 

Configuration 
Parameters

Value in
OS_
CFG.H

DATA
(bytes)

CODE (bytes)
OS_ARG_CHK_EN == 0

CODE (bytes)
OS_ARG_CHK_EN == 1

Delta 
CODE
(bytes)

Delta 
CODE

(%)

TOTAL: 1508 2362 2689 327 14%
OS_MAX_EVENTS 10

OS_MAX_FLAGS 2

OS_MAX_MEM_PART 2

OS_MAX_QS 2

OS_MAX_TASKS 16 360

OS_LOWEST_PRIO 20 87

OS_TASK_IDLE_STK_SIZE 512 1,024

OS_TASK_STAT_EN 0

OS_TASK_STAT_STK_SIZE 512

OS_ARG_CHK_EN 1

OS_CPU_HOOKS_EN 1

MINIMUM 2,177 2,493 316

OS_FLAG_EN 0

OS_FLAG_WAIT_CLR_EN 1

OS_FLAG_ACCEPT_EN 1

Table 14.3 Maximum µC/OS-II configuration. (Continued)

Configuration
Parameters

Value in
OS_
CFG.H

DATA
(bytes)

CODE (bytes)
OS_ARG_CHK_EN == 0

CODE (bytes)
OS_ARG_CHK_EN == 1

Delta 
CODE
(bytes)

Delta 
CODE

(%)
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OS_FLAG_DEL_EN 1

OS_FLAG_QUERY_EN 1

OS_MBOX_EN 0

OS_MBOX_ACCEPT_EN 1

OS_MBOX_DEL_EN 1

OS_MBOX_POST_EN 1

OS_MBOX_POST_OPT_EN 1

OS_MBOX_QUERY_EN 1

OS_MEM_EN 0

OS_MEM_QUERY_EN 1

OS_MUTEX_EN 0

OS_MUTEX_ACCEPT_EN 1

OS_MUTEX_DEL_EN 1

OS_MUTEX_QUERY_EN 1

OS_Q_EN 0

OS_Q_ACCEPT_EN 1

OS_Q_DEL_EN 1

OS_Q_FLUSH_EN 1

OS_Q_POST_EN 1

OS_Q_POST_FRONT_EN 1

OS_Q_POST_OPT_EN 1

OS_Q_QUERY_EN 1

OS_SEM_EN 0

OS_SEM_ACCEPT_EN 1

OS_SEM_DEL_EN 1

OS_SEM_QUERY_EN 1

OS_TASK_CHANGE_PRIO_EN 0

Table 14.4 Minimum µC/OS-II configuration. (Continued)

Configuration 
Parameters

Value in
OS_
CFG.H

DATA
(bytes)

CODE (bytes)
OS_ARG_CHK_EN == 0

CODE (bytes)
OS_ARG_CHK_EN == 1

Delta 
CODE
(bytes)

Delta 
CODE

(%)
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OS_TASK_CREATE_EN 1 185 196 11

OS_TASK_CREATE_EXT_EN 0

OS_TASK_DEL_EN 0

OS_TASK_SUSPEND_EN 0

OS_TASK_QUERY_EN 0

OS_TIME_DLY_HMSM_EN 0

OS_TIME_DLY_RESUME_EN 0

OS_TIME_GET_SET_EN 0

OS_SCHED_LOCK_EN 0

µC/OS-II Internals 37

Total Application 
Stacks

0

Total Application 
RAM

0

Table 14.5 80x86 data sizes.

Data Structures #Bytes

Compiler Alignment 2

BOOLEAN 1

INT8S 1

INT8U 1

INT16U 2

INT32U 4

OS_FLAGS 2

OS_STK 2

POINTER 4

Table 14.4 Minimum µC/OS-II configuration. (Continued)

Configuration 
Parameters

Value in
OS_
CFG.H

DATA
(bytes)

CODE (bytes)
OS_ARG_CHK_EN == 0

CODE (bytes)
OS_ARG_CHK_EN == 1

Delta 
CODE
(bytes)

Delta 
CODE

(%)
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15 
Chapter 15

80x86 Port
Real Mode, Large Model
with Hardware Floating-Point Support

This chapter describes how µC/OS-II has been ported to the Intel 80x86 series of processors that pro-
vides a floating-point unit (FPU). Some of the processors that can make use of this port are the Intel
80486TM, PentiumsTM (all models), XeonTM, AMD AthlonTM, K6TM-series, ElanSC520TM, and more. The
port assumes that you are using the Borland C/C++ compiler v4.51, which was set up to generate code
for the large-memory model. The processor is assumed to be running in real mode. The code for this
port is very similar to the one presented in Chapter 14, and, in some cases, I am only presenting the dif-
ferences.

This port assumes that you have enabled code generation for OSTaskCreateExt() (by setting
OS_TASK_CREATE_EXT_EN to 1 in OS_CFG.H) and that you have enabled µC/OS-II’s memory-manage-
ment services (by setting OS_MEM_EN to 1 in OS_CFG.H). Of course, you must set OS_MAX_MEM_PART to at
least 1. Finally, tasks that perform floating-point operations must be created by using
OSTaskCreateExt() and setting the OS_TASK_OPT_SAVE_FP option.

Figure 15.1 shows the programming model of an 80x86 processor running in real mode. The integer
registers are identical to those presented in Chapter 14. In fact, they are saved and restored using the
same technique. The only difference between this port and the one presented in Chapter 14 is that we
also need to save and restore the FPU registers, which is done by using the context-switch-hook func-
tions.

15.00 Development Tools
As with Chapter 14, I used the Borland C/C++ v4.51 compiler, along with the Borland Turbo Assembler
for porting and testing. This compiler generates reentrant code and provides in-line assembly language
instructions that can be inserted into C code. The compiler can be directed to generate code specifically
 377
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to make use of the FPU. I tested the code on a 300MHz Pentium-II-based computer running the
Microsoft Windows 2000 operating system. In fact, I configured the compiler to generate a DOS execut-
able, which was run in a DOS window.

Finally, you can also adapt the port provided in this chapter to other 80x86 compilers as long as they
generate real-mode code. You will most likely have to change some of the compiler options and assem-
bler directives if you use a different development environment.

Table 15.1 shows the Borland C/C++ compiler v4.51 options (i.e., flags) supplied on the command
line. These settings are used to compile the port, as well as example code provided in Chapter 1.

Figure 15.1 80x86 real-mode register model.
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Table 15.1 Compiler options used to compile port and
examples. 

Option (i.e., setting) Description

-1 Generate 80186 code

-B Compile and call assembler

-c Compiler to .OBJ

-d Merge duplicate strings

-f287 Use FPU hardware instructions

-G Select code for speed

-I Path to compiler include files is C:\BC45\INCLUDE

-k- Standard stack frame

-L Path to compiler libraries is C:\BC45\LIB

-ml Large-memory model

-N- Do not check for stack overflow

-n..\obj Path where to place object files is ..\OBJ

-O Optimize jumps

-Ob Dead code elimination

-Oe Global register allocation

-Og Optimize globally

-Oi Expand common intrinsic functions in-line

-Ol Loop optimization

-Om Invariant code motion

-Op Copy propagation

-Ov Induction variable

-v Source debugging on

-vi Turn in-line expansion on

-wpro Error reporting: call to functions with no prototype

-Z Suppress redundant loads
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Table 15.2 shows the Borland Turbo Assembler v4.0 options (i.e., flags) supplied on the command
line. These settings are used to assemble OS_CPU_A.ASM.

15.01 Directories and Files
The installation program provided on the companion CD installs the port for the Intel 80x86 (real mode,
large model with FPU support) on your hard disk. The port is found under the

\SOFTWARE\uCOS-II\Ix86L-FP\BC45
directory. The directory name stands for Intel 80x86 real mode, Large model with hardware Float-
ing-Point instructions and is placed in the Borland C++ v4.5x directory. The source code for the port is
found in the following files: OS_CPU.H, OS_CPU_C.C, and OS_CPU_A.ASM.

15.02  INCLUDES.H
Listing 15.1 shows the contents of INCLUDES.H for this 80x86 port. It is identical to the one used in
Chapter 14. INCLUDES.H is not really part of the port but is described here because it is needed to com-
pile the port files.

Table 15.2 Assembler options used to assemble .ASM files.

Option (i.e., setting) Description

/MX Case sensitive on globals

/ZI Full debugging info

/O Generate overlay code

Listing 15.1 INCLUDES.H.
#include    <stdio.h>

#include    <string.h>

#include    <ctype.h>

#include    <stdlib.h>

#include    <conio.h>

#include    <dos.h>

#include    <math.h>

#include    <setjmp.h>

#include    "os_cpu.h"

#include    "os_cfg.h"

#include    "ucos_ii.h"

#include    "pc.h"
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15.03  OS_CPU.H
OS_CPU.H contains processor- and implementation-specific #defines constants, macros, and typedefs.
OS_CPU.H for the 80x86 port are shown in Listing 15.2.  Most of OS_CPU.H is identical to the OS_CPU.H
of Chapter 14.

15.03.01 OS_CPU.H, Data Types

L15.2(1) If you consult the Borland compiler documentation, you find that an int and a short are 16
bits and a long is 32 bits. 

L15.2(2) Floating-point data types are included because it’s assumed that you are performing float-
ing-point operations in your tasks. However, µC/OS-II itself doesn’t make use of float-
ing-point numbers.

L15.2(3) A stack entry for the 80x86 processor running in real mode is 16-bits wide; thus, OS_STK is
declared accordingly. The stack width doesn’t change because of this port. All task stacks
must be declared using OS_STK as the data type.

L15.2(4) The status register (also called the processor flags) on the 80x86 processor running in real
mode is 16-bits wide. The OS_CPU_SR data type is used only if OS_CRITICAL_METHOD is set to
3, which it isn’t for this port. I included the OS_CPU_SR data type anyway, in case you use a
different compiler and need to use OS_CRITICAL_METHOD #3.

Listing 15.2 OS_CPU.H. 
#ifdef  OS_CPU_GLOBALS

#define OS_CPU_EXT

#else

#define OS_CPU_EXT  extern

#endif

typedef unsigned char  BOOLEAN;                                              (1)

typedef unsigned char  INT8U;

typedef signed   char  INT8S;

typedef unsigned int   INT16U;

typedef signed   int   INT16S;

typedef unsigned long  INT32U;

typedef signed   long  INT32S;

typedef float          FP32;                                                 (2)

typedef double         FP64;

typedef unsigned int   OS_STK;                                               (3)

typedef unsigned short OS_CPU_SR;                                            (4)
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15.03.02 OS_CPU.H, OS_ENTER_CRITICAL(), and OS_EXIT_CRITICAL()

L15.2(5) For this port, the preferred critical method is the second one because it’s directly supported
by the compiler.

L15.2(6) OS_ENTER_CRITICAL() is implemented by saving the interrupt-disable status onto the stack
and then disabling interrupts. This action is accomplished on the 80x86 by executing the
PUSHF instruction, followed by the CLI instruction. OS_EXIT_CRITICAL() simply needs to
execute a POPF instruction to restore the original contents of the processor’s SW register.

15.03.03 OS_CPU.H, Stack Growth

L15.2(7) The stack on an 80x86 processor grows from high to low memory, which means that
OS_STK_GROWTH must be set to 1.

15.03.04 OS_CPU.H, OS_TASK_SW()

L15.2(9) To switch context, OS_TASK_SW() needs to simulate an interrupt. The 80x86 provides 256
software interrupts to accomplish the simulation. The ISR (also called the exception handler)
must vector to the assembly-language function OSCtxSw() (see OS_CPU_A.ASM).  We thus
need to ensure that the pointer at vector 0x80 points to OSCtxSw().

L15.2(8) I tested the code on a PC, and I decided to use interrupt number 128 (0x80).

Listing 15.2 OS_CPU.H.  (Continued)
#define  OS_CRITICAL_METHOD    2                                             (5)

#define  OS_ENTER_CRITICAL()  asm {PUSHF; CLI}                               (6)

#define  OS_EXIT_CRITICAL()   asm  POPF

Listing 15.2 OS_CPU.H. (Continued)
#define  OS_STK_GROWTH        1                                              (7)

Listing 15.2 OS_CPU.H. (Continued)
#define  uCOS                 0x80                                           (8)

#define  OS_TASK_SW()         asm  INT   uCOS                                (9)
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15.03.05 OS_CPU.H, Tick Rate

I also decided (see Chapter 14 for additional details) to change the tick rate of the PC from the standard
18.20648Hz to 200Hz (i.e., 5ms between ticks).

L15.2(10) This statement declares an 8-bit variable (OSTickDOSCtr) that keeps track of the number of
times the ticker is called. Every 11th time, the DOS-tick handler is called. OSTickDOSCtr is
used in OS_CPU_A.ASM and really only applies to a PC environment.

15.03.06 OS_CPU.H, Floating-Point Functions

This port defines three special functions that are specific to the floating-point capabilities of the 80x86.
In other words, I had to add three new functions to the port to handle the floating-point hardware.

L15.2(11) A function has been added to initialize the floating-point handling mechanism described in
this port.

L15.2(12) OSFPRestore() is called to retrieve the value of the floating-point registers when a task is
being switched in.  OSFPRestore() is actually written in assembly language and is thus
found in OS_CPU_A.ASM.

L15.2(13) OSFPSave() is called to save the current value of the floating-point registers when a
task is being suspended. OSFPSave() is also written in assembly language and found in
OS_CPU_A.ASM.

15.04  OS_CPU_C.C
As mentioned in Chapters 13 and 14, the µC/OS-II port requires that you write ten fairly simple C func-
tions:

Listing 15.2 OS_CPU.H. (Continued)
OS_CPU_EXT  INT8U  OSTickDOSCtr;                                             (10)

Listing 15.2 OS_CPU.H. (Continued)
void       OSFPInit(void);                                                   (11)

void       OSFPRestore(void *pblk);                                          (12)

void       OSFPSave(void *pblk);                                             (13)

OSTaskStkInit() OSTaskStatHook()

OSTaskCreateHook() OSTimeTickHook()

OSTaskDelHook() OSInitHookBegin()

OSTaskSwHook() OSInitHookEnd()

OSTaskIdleHook() OSTCBInitHook()
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µC/OS-II itself only requires OSTaskStkInit(). The other nine functions must be declared but don’t
need to contain any code. However, this port uses OSTaskCreateHook(), OSTaskDelHook(),
OSTaskSwHook(), and OSInitHookEnd().

The #define constant OS_CPU_HOOKS_EN (see OS_CFG.H) should be set to 1.

15.04.01  OSTaskStkInit()
This function is called by OSTaskCreate() and OSTaskCreateExt() and is identical to the
OSTaskStkInit() presented in Section 14.04.01. You might recall that OSTaskStkInit() is called to
initialize the stack frame of a task so that it looks as if an interrupt has just occurred and that all of the
processor-integer registers have been pushed onto it. Figure 15.2 (identical to Figure 14.3) shows what
OSTaskStkInit() puts on the stack of the task being created. Note that the diagram doesn’t show the
stack frame of the code calling OSTaskStkInit() but rather the stack frame of the task being created.
Also, the stack frame only contains the contents of the integer registers and nothing about the floating
point registers.  I discuss how we handle the FPU registers shortly.

Figure 15.2 Stack frame initialization with pdata passed
on the stack.
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For reference, Listing 15.3 shows the code for OSTaskStkInit(), which is identical to the one
shown in Chapter 14 (Listing 14.3).

15.04.02  OSFPInit()
OSFPInit() is called by OSInitHookEnd() when OSInit() is done initializing µC/OS-II’s internal
structures.  OSFPInit() is basically used to initialize the floating-point context-switching mechanism
presented in this chapter. OSFPInit() assumes that you enabled µC/OS-II’s memory-management

Listing 15.3 OS_CPU_C.C, OSTaskStkInit(). 
OS_STK  *OSTaskStkInit (void  (*task)(void *pd), 

                        void   *pdata, 

                        OS_STK *ptos, 

                        INT16U  opt)

{

    INT16U *stk;

    opt    = opt;                           

    stk    = (INT16U *)ptos;

    *stk-- = (INT16U)FP_SEG(pdata); 

    *stk-- = (INT16U)FP_OFF(pdata);         

    *stk-- = (INT16U)FP_SEG(task);

    *stk-- = (INT16U)FP_OFF(task);

    *stk-- = (INT16U)0x0202;      

    *stk-- = (INT16U)FP_SEG(task);

    *stk-- = (INT16U)FP_OFF(task);

    *stk-- = (INT16U)0xAAAA;      

    *stk-- = (INT16U)0xCCCC;                

    *stk-- = (INT16U)0xDDDD;                

    *stk-- = (INT16U)0xBBBB;                

    *stk-- = (INT16U)0x0000;                

    *stk-- = (INT16U)0x1111;                

    *stk-- = (INT16U)0x2222;                

    *stk-- = (INT16U)0x3333;                

    *stk-- = (INT16U)0x4444;                

    *stk   = _DS;           

    return ((OS_STK *)stk);

}
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functions (i.e., you must set OS_MEM_EN to 1 in OS_CFG.H). The code for OSFPInit() is shown in Listing
15.4.

L15.4(1) Although not actually part of OSFPInit(), I defined this constant that is used to determine
how many storage buffers are needed to save FPU register values. In this case, I decided to
have as many buffers as I have tasks plus one for the statistic task as described below.

L15.4(2) The 80x86 FPU requires 108 bytes of storage. I decided to allocate 128 bytes for future
expansion. If you are tight on memory, you could save 20 bytes per task by setting this value
to 108.

Listing 15.4 OS_CPU_C.C, OSFPInit(). 
#define OS_NTASKS_FP       (OS_MAX_TASKS + OS_N_SYS_TASKS - 1)               (1)

#define OS_FP_STORAGE_SIZE 128                                               (2)

static  OS_MEM *OSFPPartPtr;                                                 (3)

static  INT32U  OSFPPart[OS_NTASKS_FP][OS_FP_STORAGE_SIZE / sizeof(INT32U)]; (4)

void  OSFPInit (void)

{

    INT8U    err;

#if OS_TASK_STAT_EN

    OS_TCB  *ptcb;

    void    *pblk;

#endif

    

    OSFPPartPtr = OSMemCreate(&OSFPPart[0][0],                                (5)

                  OS_NTASKS_FP, 

                  OS_FP_STORAGE_SIZE, 

                  &err);

    

#if OS_TASK_STAT_EN && OS_TASK_CREATE_EXT_EN 

    ptcb            = OSTCBPrioTbl[OS_STAT_PRIO];                             (6)

    ptcb->OSTCBOpt |= OS_TASK_OPT_SAVE_FP;                                    (7)

    pblk            = OSMemGet(OSFPPartPtr, &err);                            (8)

    if (pblk != (void *)0) {                                                  (9)

        ptcb->OSTCBExtPtr = pblk;                                            (10)

        OSFPSave(pblk);                                                      (11)

    }

#endif

}
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L15.4(3) We are using a µC/OS-II memory partition for the storage of all the FPU contexts. OSFPPartPtr
is a pointer to the partition created for this purpose. Because OSFPPartPtr is declared
static, your application does not know it exists.

L15.4(4) OSFPPart[][] is the actual partition that holds the storage for all of the FPU registers of all
the tasks. As you can probably tell, you need to have at least

(OS_MAX_TASKS + 1) * 128 

bytes of RAM (i.e., data space) for this partition. Because OSFPPart[][] is declared static,
your application does not know it exists.

L15.4(5) OSFPInit() tells µC/OS-II about this partition. You might recall that OSMemCreate() breaks
the partition into memory blocks (each of 128 bytes) and links these blocks in a singly linked
list. If an FPU storage block is needed, we simply need to call OSMemGet() (discussed in
OSTaskCreateHook()).

L15.4(6) I decided to change the attributes of OS_TaskStat() to allow it to perform floating-point math.
You might wonder why I do this because OS_TaskStat() does not perform any floating-point
operations. I did this because you might decide to extend the functionality of OS_TaskStat()
through OSTaskStatHook() and possibly perform floating-point calculations. OSFPInit()
finds the pointer to the statistic task’s OS_TCB.

L15.4(7) The .OSTCBOpt flag is set indicating that OS_TaskStat() is a task that needs to save and
restore floating-point registers because µC/OS-II doesn’t set this option by default.

L15.4(8) I get a storage buffer that holds the contents of the floating-point registers for OS_TaskStat()
when OS_TaskStat() is switched out.

L15.4(9) It is always prudent to check for an invalid pointer. 

L15.4(10) The pointer to the FPU storage area is saved in the OS_TCB extension pointer, .OSTCBExtPtr.
This process allows the context-switch code to know where floating-point registers are saved.

L15.4(11) The function OSFPSave() (see OS_CPU_A.ASM) is called to store the current contents of the
FPU registers at the location to which pblk points. It doesn’t really matter what the FPU reg-
isters contain when we do this. The important thing to realize is that the FPU registers con-
tain valid values, whatever they are. OSFPSave() is discussed in Section 15.05.05,
“OSFPSave()”.

You should be careful that your code doesn’t generate any floating-point exceptions (e.g., divide by
zero) because µC/OS-II will not do anything about them. Run-time exceptions can, however, be avoided
by adding range-testing code to your application. In fact, you should make it a practice to check for pos-
sible divide by zero and the like.
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15.04.03  OSTaskCreateHook()
Listing 15.5 shows the code for OSTaskCreateHook(). Recall that OSTaskCreateHook() is called by
OS_TCBInit() [which in turn is called by OSTaskCreate() or OSTaskCreateExt()].

L15.5(1) If you create a task that performs floating-point calculations, you must set the OS_TASK_OPT_
SAVE_FP bit in opt argument of OSTaskCreateExt(). This option tells OSTaskCreateHook()
that the task uses the FPU, and thus we need to save and restore the values of these registers
during a context switch into or out of this task.

L15.5(2) Because we are creating a task that uses the FPU, we need to allocate storage for the FPU
registers.

L15.5(3) Again, it’s a good idea to validate the pointer.

L15.5(4) The pointer to the storage area is saved in the OS_TCB of the task being created.

L15.5(5) Again, the function OSFPSave() (see OS_CPU_A.ASM) is called to store the current contents of
the FPU registers at the location to which pblk points. It doesn’t really matter what the FPU reg-
isters contain when we do this.  The important thing to realize is that the FPU registers contain
valid values, whatever they are. OSFPSave() is discussed in Section 15.05.05, “OSFPSave()”.

Figure 15.3 shows the relationship between some of the data structures after OSTaskCreateHook()
has executed.

Listing 15.5 OS_CPU_C.C, OSTaskCreateHook().

void  OSTaskCreateHook (OS_TCB *ptcb)

{

    INT8U  err;

    void  *pblk;

    

    

    if (ptcb->OSTCBOpt & OS_TASK_OPT_SAVE_FP) {                              (1)

        pblk = OSMemGet(OSFPPartPtr, &err);                                  (2)

        if (pblk != (void *)0) {                                             (3)

            ptcb->OSTCBExtPtr = pblk;                                        (4)

            OSFPSave(pblk);                                                  (5)

        }

    }

}
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Figure 15.3 Initialized stack and FPU register storage.
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15.04.04  OSTaskDelHook()
You might recall that OSTaskDelHook() is called by OSTaskDel() to extend the functionality of
OSTaskDel().  Because we allocated a memory block to hold the contents of the floating-point registers
when the task was created, we need to deallocate the block when the task is deleted.  Listing 15.6 shows
how OSTaskDelHook() accomplishes this action.

L15.6(1)

L15.6(2) We first need to confirm that we allocated a memory block that was used for floating-point
context storage.

L15.6(3) The memory block is returned to its proper memory partition.

15.04.05  OSTaskSwHook()
OSTaskSwHook() is used to extend the functionality of the context-switch code. You might recall that
OSTaskSwHook() is called by OSStartHighRdy(), the task-level context-switch function OSCtxSw(),
and the ISR context-switch function OSIntCtxSw(). Listing 15.7 shows how OSTaskSwHook() is imple-
mented.

Listing 15.6 OS_CPU_C.C, OSTaskDelHook().
void OSTaskDelHook (OS_TCB *ptcb)

{

    if (ptcb->OSTCBOpt & OS_TASK_OPT_SAVE_FP) {                              (1)

        if (ptcb->OSTCBExtPtr != (void *)0) {                                (2)

            OSMemPut(OSFPPartPtr, ptcb->OSTCBExtPtr);                        (3)

        }

    }

}

Listing 15.7 OS_CPU_C.C, OSTaskSwHook().  
void  OSTaskSwHook (void)

{

    INT8U  err;

    void  *pblk;

                                                 

    if (OSRunning == TRUE) {                                                 (1)

        if (OSTCBCur->OSTCBOpt & OS_TASK_OPT_SAVE_FP) {                      (2)

            pblk = OSTCBCur->OSTCBExtPtr;

            if (pblk != (void *)0) {                                         (3)

                OSFPSave(pblk);                                              (4)

            }

        }

    }
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L15.7(1) When OSStartHighRdy() calls OSTaskSwHook(), it is trying to restore the contents of the
floating-point registers of the highest priority task. When OSStartHighRdy() is called,
OSRunning is FALSE indicating that we haven’t started multitasking yet, and thus
OSTaskSwHook() must not save the floating-point registers.

L15.7(2) If OSTaskSwHook() is called by either OSCtxSw() or OSIntCtxSw(), then we are switching
out a task (i.e., suspending a lower priority task), and thus we check to see if this task was
created with the floating-point option.

L15.7(3) Just to be sure, we also check the contents of the .OSTCBExtPtr to ensure that the contents
do not contain a NULL pointer; it shouldn’t.

L15.7(4) As usual, we call OSFPSave() to save the current contents of the floating-point registers to
the memory block allocated for that purpose.

L15.7(5) We then check to see if the task to be switched in (i.e., the higher priority task) was created
with the floating-point option. In other words, the function checks whether you told
OSTaskCreateExt() that this task will be doing floating-point operations.

L15.7(6) Just to be sure, we also check the contents of the .OSTCBExtPtr to ensure that the contents
do not contain a NULL pointer.

L15.7(7) The function OSFPRestore() (see OS_CPU_A.ASM) is called to restore the current contents of
the FPU registers from the location to which pblk points. OSFPRe<Code>store() is dis-
cussed in Section 15.05.06, “OSFPRestore()”.

15.04.06 OSTaskIdleHook()
OS_CPU_C.C doesn’t do anything in this function.

                                                           

    if (OSTCBHighRdy->OSTCBOpt & OS_TASK_OPT_SAVE_FP) {                      (5)

        pblk = OSTCBHighRdy->OSTCBExtPtr;                  

        if (pblk != (void *)0) {                                             (6)

            OSFPRestore(pblk);                                               (7)

        }

    }

}

Listing 15.8 OS_CPU_C.C, OSTaskIdleHook(). 
void  OSTaskIdleHook (void)

{

}

Listing 15.7 OS_CPU_C.C, OSTaskSwHook(). (Continued) 
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15.04.07  OSTaskStatHook()
OS_CPU_C.C doesn’t do anything in this function.  See Example 3 in Chapter 1 for an example on what
you can do with OSTaskStatHook().

15.04.08  OSTimeTickHook()
OS_CPU_C.C doesn’t do anything in this function.

15.04.09  OSInitHookBegin()
OS_CPU_C.C doesn’t do anything in this function.

15.04.10  OSInitHookEnd()
OSInitHookEnd() is called just before OSInit() returns, which means that OSInit() initialized
µC/OS-II’s memory-partition services (which to use this port you should have set OS_MEM_EN to 1 in
OS_CFG.H). OSInitHook() simply calls OSFPInit() (see Section 15.04.02, “OSFPInit()”) which is
responsible for setting up the memory partition reserved to hold the contents of floating-point registers
for each task.  The code for OSInitHookEnd() is shown in Listing 15.12.

Listing 15.9 OS_CPU_C.C, OSTaskStatHook().
void  OSTaskStatHook (void)

{

}

Listing 15.10 OS_CPU_C.C, OSTimeTickHook().
void  OSTimeTickHook (void)

{

}

Listing 15.11 OS_CPU_C.C, OSInitHookBegin().
void  OSInitHookBegin (void)

{

}

Listing 15.12 OS_CPU_C.C, OSInitHookEnd().
void  OSInitHookEnd (void)

{

    OSFPInit();

}
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15.04.11  OSTCBInitHook()
OS_CPU_C.C doesn’t do anything in this function.

15.05 OS_CPU_A.ASM
A µC/OS-II port requires that you write four assembly-language functions:

OSStartHighRdy()
OSCtxSw()
OSIntCtxSw()
OSTickISR()

This port adds two functions called OSFPSave() and OSFPRestore(), which are found in OS_CPU_A.ASM.
These functions are responsible for saving and restoring the contents of floating-point registers during a
context switch, respectively.

15.05.01  OSStartHighRdy()
This function is called by OSStart() to start the highest priority task ready to run. It is identical to the
OSStartHighRdy() presented in Chapter 14 (see Section 14.05.01, “OSStartHighRdy()”).  The code
is shown again in Listing 15.14 for your convenience.

Listing 15.13 OS_CPU_C.C, OSTCBInitHook().
void  OSTCBInitHook (void)

{

}

Listing 15.14 OSStartHighRdy(). 
_OSStartHighRdy  PROC FAR

            MOV    AX, SEG _OSTCBHighRdy          

            MOV    DS, AX                         

;

            CALL   FAR PTR _OSTaskSwHook

;

            MOV    AL, 1                

            MOV    BYTE PTR DS:_OSRunning, AL     

;

            LES    BX, DWORD PTR DS:_OSTCBHighRdy

            MOV    SS, ES:[BX+2]                  

            MOV    SP, ES:[BX+0]                  

;
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15.05.02  OSCtxSw()
A task-level context switch is accomplished on the 80x86 processor by executing a software-interrupt
instruction. The ISR must vector to OSCtxSw(). The sequence of events that leads µC/OS-II to vector to
OSCtxSw() begins when the current task calls a service provided by µC/OS-II, which causes a higher
priority task to be ready to run. At the end of the service call, µC/OS-II calls the function OS_Sched(),
which concludes that the current task is no longer the most important task to run. OS_Sched() loads the
address of the OS_TCB of the highest priority task into OSTCBHighRdy and then executes the soft-
ware-interrupt instruction by invoking the macro OS_TASK_SW(). Note that the variable OSTCBCur
already contains a pointer to the current task’s OS_TCB. The code for OSCtxSw(), which is identical to
the one presented in Chapter 14, is shown in Listing 15.15.  OSCtxSw() is discussed again because of
the added complexity of the floating-point context switch.

            POP    DS                            

            POP    ES                            

            POPA                                                 

;

            IRET

_OSStartHighRdy  ENDP

Listing 15.15 OSCtxSw(). 
_OSCtxSw    PROC   FAR                                                       (1)

;

            PUSHA                                                            (2)

            PUSH   ES                              

            PUSH   DS                              

;

            MOV    AX, SEG _OSTCBCur               

            MOV    DS, AX                          

;

            LES    BX, DWORD PTR DS:_OSTCBCur                                (3)

            MOV    ES:[BX+2], SS                   

            MOV    ES:[BX+0], SP                   

;

            CALL   FAR PTR _OSTaskSwHook                                     (4)

;

            MOV    AX, WORD PTR DS:_OSTCBHighRdy+2                           (5)

            MOV    DX, WORD PTR DS:_OSTCBHighRdy   

            MOV    WORD PTR DS:_OSTCBCur+2, AX     

            MOV    WORD PTR DS:_OSTCBCur, DX       

Listing 15.14 OSStartHighRdy(). (Continued)
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Figure 15.4 shows the stack frames, as well as the FPU storage areas of the task being suspended
and the task being resumed.

Figure 15.4 80x86 stack frames and FPU storage during a 
task-level context switch.

;

            MOV    AL, BYTE PTR DS:_OSPrioHighRdy                            (6)

            MOV    BYTE PTR DS:_OSPrioCur, AL      

;

            LES    BX, DWORD PTR DS:_OSTCBHighRdy                            (7)

            MOV    SS, ES:[BX+2]                   

            MOV    SP, ES:[BX]                     

;

            POP    DS                                                        (8)

            POP    ES                              

            POPA                                   

;

            IRET                                                             (9)

;

_OSCtxSw    ENDP

Listing 15.15 OSCtxSw(). (Continued)
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F15.4(1)

L15.15(1) On the 80x86 processor, the software-interrupt instruction forces the SW register to be
pushed onto the current task’s stack, followed by the return address (segment and then offset)
of the task that executed the INT instruction [i.e., the task that invoked OS_TASK_SW()].

F15.4(2)

L15.15(2) The remaining CPU registers of the task to suspend are saved onto the current task’s stack.

F15.4(3)

L15.15(3) The pointer to the new stack frame is saved into the task’s OS_TCB. This pointer is composed
of the stack segment (SS register) and the stack pointer (SP register). The OS_TCB in
µC/OS-II is organized such that the stack pointer is placed at the beginning of the OS_TCB
structure to make it easier to save and restore the stack pointer using assembly language.

F15.4(4)

F15.4(5)

L15.15(4) The task-switch hook OSTaskSwHook() is then called. Note that when OSTaskSwHook() is
called, OSTCBCur points to the current task’s OS_TCB, while OSTCBHighRdy points to the new
task’s OS_TCB. You can thus access each task’s OS_TCB from OSTaskSwHook().
OSTaskSwHook() first saves the current contents of the FPU registers into the storage area
allocated to the current task. This storage is pointed to by the .OSTCBExtPtr field of the cur-
rent task’s OS_TCB. The FPU registers are then loaded with the values stored in the new task’s
storage area. Again, the .OSTCBExtPtr field of the new task points to the storage area of the
floating-point registers. Of course, storage and retrieval is contingent on the .OSTCBExtPtr
of each task being non-NULL. However, it is quite possible for the new task to not require
floating-point and thus not have any storage area for it. In this case, OSTaskSwHook() does
not change the contents of the FPU.

L15.15(5) Upon returning from OSTaskSwHook(), OSTCBHighRdy is copied to OSTCBCur because the
new task is now also the current task.

L15.15(6) Also, OSPrioHighRdy is copied to OSPrioCur for the same reason.

F15.4(6)

L15.15(7) At this point, OSCtxSw() loads the processor’s registers with the new task’s context. This
action is done by retrieving the SS and SP registers from the new task’s OS_TCB.

F15.4(7)

L15.15(8) The remaining CPU registers are pulled from the new task’s stack.

F15.4(8)

L15.15(9) An IRET instruction is executed in order to load the new task’s program counter and status
word. After this instruction, the processor resumes execution of the new task.

Note that interrupts are disabled during OSCtxSw() and also during execution of OSTaskSwHook().

15.05.03  OSIntCtxSw()
OSIntCtxSw() is called by OSIntExit() to perform a context switch from an ISR. Because
OSIntCtxSw() is called from an ISR, it is assumed that all the processor’s integer registers are already
properly saved onto the interrupted task’s stack.
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The code is shown in Listing 15.16 and is identical to the OSIntCtxSw() presented in Chapter 14.
The floating-point registers are handled by OSTaskSwHook(). Figure 15.5 shows the context-switch pro-
cess from OSIntCtxSw()’ s point of view.

Figure 15.5 80x86 stack frames and FPU storage during an 
interrupt-level context switch.
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Assume that a higher priority task is made ready to run by the ISR. µC/OS-II requires that an ISR
calls OSIntExit() when it has finished servicing the interrupting device. OSIntExit() basically tells
µC/OS-II that it’s time to return to task-level code if all nested interrupts have completed. In other
words, when OSIntNesting is decremented to 0 by OSIntExit(), OSIntExit() returns to task-level
code.

When OSIntExit() executes, it notices that the interrupted task is no longer the task that needs to
run because a higher priority task is now ready. In this case, the pointer OSTCBHighRdy is made to point
to the new task’s OS_TCB, and OSIntExit() calls OSIntCtxSw() to perform the context switch.

F15.5(2)

F15.5(3)

L15.16(1) The first thing OSIntCtxSw() does is call OSTaskSwHook(). Note that when
OSTaskSwHook() is called, OSTCBCur points to the current task’s OS_TCB, while OSTCBHighRdy
points to the new task’s OS_TCB. You can thus access each task’s OS_TCB from

Listing 15.16 OSIntCtxSw(). 
_OSIntCtxSw PROC   FAR

;

            CALL   FAR PTR _OSTaskSwHook                                     (1)

;

            MOV    AX, SEG _OSTCBCur               

            MOV    DS, AX                          

;

            MOV    AX, WORD PTR DS:_OSTCBHighRdy+2                           (2)

            MOV    DX, WORD PTR DS:_OSTCBHighRdy   

            MOV    WORD PTR DS:_OSTCBCur+2, AX     

            MOV    WORD PTR DS:_OSTCBCur, DX       

;

            MOV    AL, BYTE PTR DS:_OSPrioHighRdy                            (3)

            MOV    BYTE PTR DS:_OSPrioCur, AL

;

            LES    BX, DWORD PTR DS:_OSTCBHighRdy                            (4)

            MOV    SS, ES:[BX+2]                   

            MOV    SP, ES:[BX]                     

;

            POP    DS                                                        (5)

            POP    ES                              

            POPA                                   

;

            IRET                                                             (6)

;

_OSIntCtxSw ENDP
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OSTaskSwHook().  As previously discussed, OSTaskSwHook() first saves the current contents
of the FPU registers into the storage area allocated to the current task.  This storage is pointed
to by the .OSTCBExtPtr field of the current task’s OS_TCB.  The FPU registers are then loaded
with the values stored in the new task’s storage area.  Again, the .OSTCBExtPtr field of the
new task points to the storage area of the floating-point registers.

L15.16(2) Upon returning from OSTaskSwHook(), OSTCBHighRdy is copied to OSTCBCur because the
new task is now also the current task.

L15.16(3) OSPrioHighRdy is also copied to OSPrioCur for the same reason.

F15.5(4)

L15.16(4) At this point, OSCtxSw() loads the processor’s registers with the new task’s context. This
action is done by retrieving the SS and SP registers from the new task’s OS_TCB. 

F15.5(5)

L15.16(5) The remaining CPU registers are pulled from the stack.

F15.5(6)

L15.16(6) An IRET instruction is executed in order to load the new task’s program counter and status
word.  After this instruction, the processor resumes execution of the new task.

Note that interrupts are disabled during OSIntCtxSw() and also during execution of
OSTaskSwHook().

15.05.04 OSTickISR() 

As mentioned in Section 15.03.05, “OS_CPU.H, Tick Rate”, the tick rate of an RTOS should be set
between 10 and 100Hz. On the PC, however, the ticker occurs every 54.93ms (18.20648Hz) and is
obtained by a hardware timer that interrupts the CPU. Recall that I reprogrammed the tick rate to 200Hz
because it was a multiple of 18.20648Hz. The ticker on the PC is assigned to vector 0x08, but µC/OS-II
redefined it so that it vectors to OSTickISR() instead. Because of this change, the PC’s tick handler is
saved [see PC.C, PC_DOSSaveReturn()] in vector 129 (0x81). To satisfy DOS, however, the PC’s han-
dler is called every 54.93ms. OSTickISR() for this port is identical to the OSTickISR() presented in
Section 14.05.04, “OSTickISR()”, and thus there is no need to repeat the description here. I did, how-
ever, include the code in Listing 15.17 for your convenience. 

Listing 15.17 OSTickISR(). 
_OSTickISR  PROC   FAR

;

            PUSHA

            PUSH   ES

            PUSH   DS

;

            MOV    AX, SEG(_OSIntNesting)

            MOV    DS, AX

            INC    BYTE PTR DS:_OSIntNesting     

;

            CMP    BYTE PTR DS:_OSIntNesting, 1 
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15.05.05  OSFPSave()
OSFPSave() is not normally part of a µC/OS-II port.  OSFPSave() basically takes the contents of the
floating-point registers and saves them at the address passed to OSFPSave().  OSFPSave() is called from
C but is written in assembly language because the function must execute an FPU instruction that is not

            JNE    SHORT _OSTickISR1             

            MOV    AX, SEG(_OSTCBCur)            

            MOV    DS, AX

            LES    BX, DWORD PTR DS:_OSTCBCur  

            MOV    ES:[BX+2], SS                 

            MOV    ES:[BX+0], SP                 

;

_OSTickISR1:

            MOV    AX, SEG(_OSTickDOSCtr)

            MOV    DS, AX

            DEC    BYTE PTR DS:_OSTickDOSCtr

            CMP    BYTE PTR DS:_OSTickDOSCtr, 0

            JNE    SHORT _OSTickISR2             

;

            MOV    BYTE PTR DS:_OSTickDOSCtr, 11

            INT    081H                          

            JMP    SHORT _OSTickISR3

_OSTickISR2:

            MOV    AL, 20H

            MOV    DX, 20H                       

            OUT    DX, AL                        

;

_OSTickISR3:

            CALL   FAR PTR _OSTimeTick

;

            CALL   FAR PTR _OSIntExit

;

            POP    DS                

            POP    ES

            POPA

;

            IRET

;

_OSTickISR  ENDP

Listing 15.17 OSTickISR(). (Continued)
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available from C.  OSFPSave() is called by the C functions OSFPInit(), OSTaskCreateHook(), and
OSTaskSwHook() as follows

where pblk is the address of a storage area large enough to hold the FPU context and must be at least
108 bytes. Listing 15.18 shows the code for OSFPSave().

L15.18(1) OSFPSave() saves integer registers onto the current task’s stack because they are needed by
this function.

L15.18(2) The pointer passed to OSFPSave() as an argument is loaded into ES:BX.

L15.18(3) The FPU instruction FSAVE is executed.  This instruction saves the whole context of the FPU
(108 bytes worth) at the address found in ES:BX.

L15.18(4) The temporary registers are retrieved from the stack.

L15.18(5) OSFPSave() returns to its caller.

15.05.06  OSFPRestore()
OSFPRestore() is also not normally part of a µC/OS-II port.  OSFPRestore() basically loads the FPU
registers with the contents of a memory buffer pointed to by the address passed to OSFPRestore().
OSFPRestore() is called from C but is written in assembly language because the function must execute

OSFPSave((void *pblk);

Listing 15.18 OSFPSave().
_OSFPSave    PROC   FAR

;

             PUSH   BP                                                       (1)

             MOV    BP,SP

             PUSH   ES

             PUSH   BX

;

             LES    BX, DWORD PTR [BP+6]                                     (2)

;

             FSAVE  ES:[BX]                                                  (3)

;

             POP    BX                                                       (4)

             POP    ES

             POP    BP

;

             RET                                                             (5)

;

_OSFPSave    ENDP
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an FPU instruction that is not available from C. OSFPRestore() is only called by OSTaskSwHook() as
follows

where pblk is the address of a storage area large enough to hold the FPU context and must be at least
108 bytes. Listing 15.19 shows the code for OSFPRestore().

L15.19(1) OSFPRestore() saves integer registers onto the current task’s stack because they are needed
by this function.

L15.19(2) The pointer passed to OSFPRestore() as an argument is loaded into ES:BX.

L15.19(3) The FPU instruction FRSTOR is executed.  This instruction loads the FPU with the contents of
the memory location pointed to by ES:BX.

L15.19(4) The temporary registers are retrieved from the stack.

L15.19(5) OSFPRestore() returns to its caller.

15.06 Memory Usage
The only code that has changed in this chapter from the code provided in Chapter 14 is OS_CPU_A.ASM,
OS_CPU_C.C, and OS_CPU.H.  These files add only an additional 164bytes of code space (ROM).

OSFPRestore(void *pblk);

Listing 15.19 OSFPRestore().
_OSFPRestore PROC   FAR

;

             PUSH   BP                                                       (1)

             MOV    BP,SP

             PUSH   ES

             PUSH   BX

;

             LES    BX, DWORD PTR [BP+6]                                     (2)

;

             FRSTOR ES:[BX]                                                  (3)

;

             POP    BX                                                       (4)

             POP    ES

             POP    BP

;

             RET                                                             (5)

;

_OSFPRestore ENDP
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You must include the code for OSTaskCreateExt() (set OS_TASK_CREATE_EXT to 1 in OS_CFG.H) and
the memory-management services (set OS_MEM_EN to 1 in OS_CFG.H) because this port does not work
without them.

With respect to data space, this port requires a memory buffer of 128 bytes (although we only need
108 bytes) for each task that performs floating-point operations.

Note: The spreadsheet for this port is found on the companion CD; see:
\SOFTWARE\uCOS-II\Ix86L-FP\BC45\DOC\80x86L-FP-ROM-RAM.XLS
You need Microsoft Excel for Office 2000 (or higher) to use this file. The spreadsheet allows you
to do what-if scenarios based on the options you select. You can change the configuration values
(in red) and see how they affect µC/OS-II’s ROM and RAM usage on the 80x86.  For the ???_EN
values, you must use either 0 or 1.

As with Chapter 14, I set up the Borland compiler to generate the fastest code. The number of bytes
shown are not meant to be accurate but are simply provided to give you a relative idea of how much
code space each of the µC/OS-II group of services requires.

The spreadsheet also shows you the difference in code size based on the value of OS_ARG_CHK_EN in
your OS_CFG.H.  You don’t need to change the value of OS_ARG_CHK_EN to see the difference.

The Data column is not as straightforward. Notice that the stacks for both the idle task and the statis-
tics task have been set to 1,024 bytes (1KB) each. Based on your own requirements, these numbers
might be higher or lower. As a minimum, µC/OS-II requires about 3,500 bytes of RAM for µC/OS-II
internal data structures if you configure the maximum number of tasks (62 application tasks).  I added
an entry that specifies the number of tasks that can do floating-point operations.  Remember that each
such task requires a buffer of 128 bytes.  One buffer is always allocated because I changed the statistic
task to allow floating-point operations.

If you use an 80x86 processor, you will most likely not be too restricted with memory, and thus
µC/OS-II will most likely not be the largest user of memory.
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Chapter 16

µC/OS-II Reference Manual
This chapter provides a reference to µC/OS-II services. Each of the user-accessible kernel services is
presented in alphabetical order. The following information is provided for each of the services:

• A brief description

• The function prototype

• The filename of the source code

• The #define constant needed to enable the code for the service

• A description of the arguments passed to the function

• A description of the returned value(s)

• Specific notes and warnings on using the service

• One or two examples of how to use the function
 405
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OS_ENTER_CRITICAL()
OS_EXIT_CRITICAL()

OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL() are macros used to disable and enable, respectively,
the processor’s interrupts.

Arguments
none

Returned Values
none

Notes/Warnings
1. These macros must be used in pairs.

2. If OS_CRITICAL_METHOD is set to 3, your code is assumed to have allocated local storage for a vari-
able of type OS_CPU_SR, which is called cpu_sr, as follows     

Chapter File Called from Code enabled by
3 OS_CPU.H Task or ISR N/A

#if OS_CRITICAL_METHOD == 3      /* Allocate storage for CPU status register */

    OS_CPU_SR  cpu_sr;

#endif

Example

void TaskX(void *pdata)

{

#if OS_CRITICAL_METHOD == 3

      OS_CPU_SR   cpu_sr;

 #endif

      for (;;) {

         .

         .

         OS_ENTER_CRITICAL();    /* Disable interrupts     */

         .                       /* Access critical code   */

         OS_EXIT_CRITICAL();     /* Enable  interrupts     */

         .

         .

      }

}
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OSFlagAccept()
OS_FLAGS OSFlagAccept(OS_FLAG_GRP *pgrp,
                      OS_FLAGS flags,
                      INT8U wait_type,
                      INT8U *err);

OSFlagAccept() allows you to check the status of a combination of bits to be either set or cleared in an
event flag group.  Your application can check for any bit to be set/cleared or all bits to be set/cleared.
This function behaves exactly as OSFlagPend() does, except that the caller does NOT block if the
desired event flags are not present.

Arguments
pgrp is a pointer to the event flag group.  This pointer is returned to your application when

the event flag group is created [see OSFlagCreate()].

flags is a bit pattern indicating which bit(s) (i.e., flags) you wish to check. The bits you want
are specified by setting the corresponding bits in flags.

wait_type specifies whether you want all bits to be set/cleared or any of the bits to be set/cleared.
You can specify the following arguments:

OS_FLAG_WAIT_CLR_ALL You check all bits in flags to be clear (0)

OS_FLAG_WAIT_CLR_ANY You check any bit  in flags to be clear (0)

OS_FLAG_WAIT_SET_ALL You check all bits in flags to be set (1)

OS_FLAG_WAIT_SET_ANY You check any bit  in flags to be set (1)

You can add OS_FLAG_CONSUME if you want the event flag(s) to be 
consumed by the call. For example, to wait for any flag in a group and 
then clear the flags that are present, set wait_type to

OS_FLAG_WAIT_SET_ANY + OS_FLAG_CONSUME

err a pointer to an error code and can be any of the following:

OS_NO_ERR No error

OS_ERR_EVENT_TYPE You are not pointing to an event flag group

OS_FLAG_ERR_WAIT_TYPE You didn’t specify a proper wait_type argument.

OS_FLAG_INVALID_PGRP You passed a NULL pointer instead of the event flag 
handle.

OS_FLAG_ERR_NOT_RDY The desired flags for which you are waiting are not 
available.

Returned Values
The state of the flags in the event flag group.

Chapter File Called from Code enabled by
9 OS_FLAG.C Task OS_FLAG_EN && OS_FLAG_ACCEPT_EN
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Notes/Warnings
1. The event flag group must be created before it is used.

2. This function does not block if the desired flags are not present.

Example

#define  ENGINE_OIL_PRES_OK   0x01

#define  ENGINE_OIL_TEMP_OK   0x02

#define  ENGINE_START         0x04

OS_FLAG_GRP *EngineStatus;

void Task (void *pdata)

{

    INT8U     err;

    OS_FLAGS  value;

    pdata = pdata;

    for (;;) {

        value = OSFlagAccept(EngineStatus, 

                             ENGINE_OIL_PRES_OK + ENGINE_OIL_TEMP_OK, 

                             OS_FLAG_WAIT_SET_ALL, 

                             &err);

        switch (err) {

            case OS_NO_ERR:

                 /* Desired flags are available */

                 break;

            case OS_FLAG_ERR_NOT_RDY:

                 /* The desired flags are NOT available */

                 break;

        } 

        .

        .

    }

}
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OSFlagCreate()
OS_FLAG_GRP *OSFlagCreate(OS_FLAGS flags, INT8U *err);

OSFlagCreate() is used to create and initialize an event flag group.

Arguments
flags contains the initial value to store in the event flag group.

err is a pointer to a variable that is used to hold an error code.  The error code can be one of
the following:

OS_NO_ERR if the call is successful and the event flag group has 
been created.

OS_ERR_CREATE_ISR if you attempt to create an event flag group from an 
ISR.

OS_FLAG_GRP_DEPLETED if no more event flag groups are available. You need to 
increase the value of OS_MAX_FLAGS in OS_CFG.H.

Returned Values
A pointer to the event flag group if a free event flag group is available.  If no event flag group is avail-
able, OSFlagCreate() returns a NULL pointer.

Notes/Warnings
1. Event flag groups must be created by this function before they can be used by the other services.

Chapter File Called from Code enabled by
9 OS_FLAG.C Task or startup code OS_FLAG_EN

Example

OS_FLAG_GRP *EngineStatus;

void main (void)

{

    INT8U  err;

    .

    OSInit();        /* Initialize µC/OS-II */

    .

    .

                     /* Create a flag group containing the engine’s status */

    EngineStatus = OSFlagCreate(0x00, &err);   

    .

    .

    OSStart();       /* Start Multitasking  */

}
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OSFlagDel()
OS_FLAG_GRP *OSFlagDel(OS_FLAG_GRP *pgrp, INT8U opt, INT8U *err);

OSFlagDel() is used to delete an event flag group.  This function is dangerous to use because multiple
tasks could be relying on the presence of the event flag group. You should always use this function with
great care. Generally speaking, before you delete an event flag group, you must first delete all the tasks
that access the event flag group.

Arguments
pgrp is a pointer to the event flag group.  This pointer is returned to your application when

the event flag group is created [see OSFlagCreate()].

opt specifies whether you want to delete the event flag group only if there are no pending
tasks (OS_DEL_NO_PEND) or whether you always want to delete the event flag group
regardless of whether tasks are pending or not (OS_DEL_ALWAYS).  In this case, all pend-
ing task are readied.

err is a pointer to a variable that is used to hold an error code. The error code can be one of
the following:

OS_NO_ERR if the call is successful and the event flag group has 
been deleted.

OS_ERR_DEL_ISR if you attempt to delete an event flag group from an 
ISR.

OS_FLAG_INVALID_PGRP if you pass a NULL pointer in pgrp.

OS_ERR_EVENT_TYPE if pgrp is not pointing to an event flag group.

OS_ERR_INVALID_OPT if you do not specify one of the two options mentioned 
in the opt argument.

OS_ERR_TASK_WAITING if one or more task are waiting on the event flag group 
and you specify OS_DEL_NO_PEND.

Returned Values
A NULL pointer if the event flag group is deleted or pgrp if the event flag group is not deleted.  In the 
latter case, you need to examine the error code to determine the reason for the error.

Chapter File Called from Code enabled by
9 OS_FLAG.C Task OS_FLAG_EN and OS_FLAG_DEL_EN
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Notes/Warnings
1. You should use this call with care because other tasks might expect the presence of the event flag 

group.

2. This call can potentially disable interrupts for a long time.  The interrupt-disable time is directly 
proportional to the number of tasks waiting on the event flag group.

Example

OS_FLAG_GRP *EngineStatusFlags;

void Task (void *pdata)

{

    INT8U        err;

    OS_FLAG_GRP *pgrp;

    pdata = pdata;

    while (1) {

        .

        .

        pgrp = OSFlagDel(EngineStatusFlags, OS_DEL_ALWAYS, &err);

        if (pgrp == (OS_FLAG_GRP *)0) {

            /* The event flag group was deleted */

        }

        .

        .

    }

}
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OSFlagPend()
OS_FLAGS OSFlagPend(OS_FLAG_GRP *pgrp,
                    OS_FLAGS flags,
                    INT8U wait_type,
                    INT16U timeout,
                    INT8U *err);

OSFlagPend() is used to have a task wait for a combination of conditions (i.e., events or bits) to be set 
(or cleared) in an event flag group.  You application can wait for any condition to be set or cleared or for 
all conditions to be set or cleared.  If the events that the calling task desires are not available, then the 
calling task is blocked until the desired conditions are satisfied or the specified timeout expires.

Arguments
pgrp is a pointer to the event flag group.  This pointer is returned to your application when

the event flag group is created [see OSFlagCreate()].

flags is a bit pattern indicating which bit(s) (i.e., flags) you wish to check.  The bits you want
are specified by setting the corresponding bits in flags.

wait_type specifies whether you want all bits to be set/cleared or any of the bits to be set/cleared.
You can specify the following arguments:

OS_FLAG_WAIT_CLR_ALL You check all bits in flags to be clear (0)

OS_FLAG_WAIT_CLR_ANY You check any bit  in flags to be clear (0)

OS_FLAG_WAIT_SET_ALL You check all bits in flags to be set (1)

OS_FLAG_WAIT_SET_ANY You check any bit  in flags to be set (1)

You can also specify whether the flags are consumed by adding OS_FLAG_CONSUME to
the wait_type.  For example, to wait for any flag in a group and then clear the flags
that satisfy the condition, set wait_type to

OS_FLAG_WAIT_SET_ANY + OS_FLAG_CONSUME

err is a pointer to an error code and can be:

OS_NO_ERR No error.

OS_ERR_PEND_ISR You try to call OSFlagPend from an ISR, which is not 
allowed.

OS_FLAG_INVALID_PGRP You pass a NULL pointer instead of the event flag 
handle.

OS_ERR_EVENT_TYPE You are not pointing to an event flag group.

OS_TIMEOUT The flags are not available within the specified amount 
of time.

OS_FLAG_ERR_WAIT_TYPE You don’t specify a proper wait_type argument.

Chapter File Called from Code enabled by
9 OS_FLAG.C Task only OS_FLAG_EN
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Returned Value
The value of the flags in the event flag group after they are consumed (if OS_FLAG_CONSUME is specified) 
or the state of the flags just before OSFlagPend() returns.  OSFlagPend() returns 0 if a timeout occurs.

Notes/Warnings
1. The event flag group must be created before it’s used.

Example

#define  ENGINE_OIL_PRES_OK   0x01

#define  ENGINE_OIL_TEMP_OK   0x02

#define  ENGINE_START         0x04

OS_FLAG_GRP *EngineStatus;

void Task (void *pdata)

{

    INT8U     err;

    OS_FLAGS  value;

    pdata = pdata;

    for (;;) {

        value = OSFlagPend(EngineStatus, 

                           ENGINE_OIL_PRES_OK   + ENGINE_OIL_TEMP_OK, 

                           OS_FLAG_WAIT_SET_ALL + OS_FLAG_CONSUME,

                           10,

                           &err);

        switch (err) {

            case OS_NO_ERR:

              /* Desired flags are available */

                 break;

            case OS_TIMEOUT:

              /* The desired flags were NOT available before 10 ticks occurred */

                 break;

        } 

        .

        .

    }

}
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OSFlagPost()
OS_FLAGS OSFlagPost(OS_FLAG_GRP *pgrp,
                    OS_FLAGS flags,
                    INT8U opt,
                    INT8U *err);

You set or clear event flag bits by calling OSFlagPost().  The bits set or cleared are specified in a bit
mask.  OSFlagPost() readies each task that has its desired bits satisfied by this call.  You can set or clear
bits that are already set or cleared.

Arguments
pgrp is a pointer to the event flag group.  This pointer is returned to your application when

the event flag group is created [see OSFlagCreate()].

flags specifies which bits you want set or cleared.  If opt is OS_FLAG_SET, each bit that is set in
flags sets the corresponding bit in the event flag group. For example to set bits 0, 4, and 5,
you set flags to 0x31 (note, bit 0 is the least significant bit).  If opt is OS_FLAG_CLR,
each bit that is set in flags will clears the corresponding bit in the event flag group.  For
example to clear bits 0, 4, and 5, you specify flags as 0x31 (note, bit 0 is the least sig-
nificant bit).

opt indicates whether the flags are set (OS_FLAG_SET) or cleared (OS_FLAG_CLR).

err is a pointer to an error code and can be:

 OS_NO_ERR The call is successful.

 OS_FLAG_INVALID_PGRP You pass a NULL pointer.

 OS_ERR_EVENT_TYPE You are not pointing to an event flag group.

 OS_FLAG_INVALID_OPT You specify an invalid option.

Returned Value
The new value of the event flags.

Notes/Warnings
1. Event flag groups must be created before they are used.

2. The execution time of this function depends on the number of tasks waiting on the event flag group.  
However, the execution time is deterministic.

3. The amount of time interrupts are disabled also depends on the number of tasks waiting on the 
event flag group.

Chapter File Called from Code enabled by
9 OS_FLAG.C Task or ISR OS_FLAG_EN



OSFlagPost()  415

16
Example

#define  ENGINE_OIL_PRES_OK   0x01

#define  ENGINE_OIL_TEMP_OK   0x02

#define  ENGINE_START         0x04

OS_FLAG_GRP  *EngineStatusFlags;

void  TaskX (void *pdata)

{

    INT8U  err;

    pdata = pdata;

    for (;;) {

        .

        .

        err = OSFlagPost(EngineStatusFlags, ENGINE_START, OS_FLAG_SET, &err);

        .

        .

    }

}
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OSFlagQuery()
OS_FLAGS OSFlagQuery(OS_FLAG_GRP *pgrp, INT8U *err);

OSFlagQuery() is used to obtain the current value of the event flags in a group.  At this time, this func-
tion does not return the list of tasks waiting for the event flag group.

Arguments
pgrp is a pointer to the event flag group.  This pointer is returned to your application when

the event flag group is created [see OSFlagCreate()].

err is a pointer to an error code and can be:

OS_NO_ERR The call is successful.

OS_FLAG_INVALID_PGRP You pass a NULL pointer.

OS_ERR_EVENT_TYPE You are not pointing to an event flag groups.

Returned Value
The state of the flags in the event flag group.

Notes/Warnings
1. The event flag group to query must be created.

2. You can call this function from an ISR.

Chapter File Called from Code enabled by
9 OS_FLAG.C Task or ISR OS_FLAG_EN && OS_FLAG_QUERY_EN

Example

OS_FLAG_GRP *EngineStatusFlags;

void Task (void *pdata)

{

    OS_FLAGS flags;

    INT8U    err;

    pdata = pdata;

    for (;;) {

        .

        .

        flags = OSFlagQuery(EngineStatusFlags, &err);

        .

        .

    }

}
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OSInit()
void OSInit(void);

OSInit() initializes µC/OS-II and must be called prior to calling OSStart(), which actually starts mul-
titasking.

Arguments
none

Returned Values
none

Notes/Warnings
1. OSInit() must be called before OSStart().

Chapter File Called from Code enabled by
3 OS_CORE.C Startup code only N/A

Example

void main (void)

{

      . 

      .  

      OSInit();      /* Initialize uC/OS-II */

      .

      .

      OSStart();     /* Start Multitasking  */

}



418 Chapter 16: µC/OS-II Reference Manual
OSIntEnter()
void OSIntEnter(void);

OSIntEnter() notifies µC/OS-II that an ISR is being processed, which allows µC/OS-II to keep track of
interrupt nesting. OSIntEnter() is used in conjunction with OSIntExit().

Arguments
none

Returned Values
none

Notes/Warnings
1. This function must not be called by task-level code.

2. You can increment the interrupt-nesting counter (OSIntNesting) directly in your ISR to avoid the 
overhead of the function call/return.  It’s safe to increment OSIntNesting in your ISR because 
interrupts are assumed to be disabled when OSIntNesting needs to be incremented.

3. You are allowed to nest interrupts up to 255 levels deep.

Example 1
(Intel 80x86, real mode, large model)

Use OSIntEnter() for backward compatibility with µC/OS.

Chapter File Called from Code enabled by
3 OS_CORE.C ISR only N/A

    ISRx PROC   FAR

         PUSHA                          ; Save interrupted task's context

         PUSH   ES

         PUSH   DS

;

         CALL   FAR PTR _OSIntEnter     ; Notify µC/OS-II of start of ISR

         .

         .

         POP    DS                      ; Restore processor registers

         POP    ES

         POPA

         IRET                           ; Return from interrupt

    ISRx ENDP
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Example 2
(Intel 80x86, real mode, large model)

    ISRx    PROC   FAR

            PUSHA                          ; Save interrupted task's context

            PUSH   ES

            PUSH   DS

;

            MOV    AX, SEG(_OSIntNesting)  ; Reload DS

            MOV    DS, AX

;

            INC    BYTE PTR _OSIntNesting  ; Notify uC/OS-II of start of ISR

            .

            .

            .

            POP    DS                      ; Restore processor registers

            POP    ES

            POPA

            IRET                           ; Return from interrupt

    ISRx    ENDP
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OSIntExit()
void OSIntExit(void);

OSIntExit() notifies µC/OS-II that an ISR is complete, which allows µC/OS-II to keep track of inter-
rupt nesting. OSIntExit() is used in conjunction with OSIntEnter(). When the last nested interrupt
completes, OSIntExit() determines if a higher priority task is ready to run, in which case, the interrupt
returns to the higher priority task instead of the interrupted task.

Arguments
none

Returned Value
none

Notes/Warnings
1. This function must not be called by task-level code. Also, if you decided to increment 

OSIntNesting, you still need to call OSIntExit().

Example
(Intel 80x86, real mode, large model)

Chapter File Called from Code enabled by
3 OS_CORE.C ISR only N/A

    ISRx    PROC    FAR

            PUSHA                      ; Save processor registers

            PUSH    ES

            PUSH    DS

            .

            .

            CALL    FAR PTR _OSIntExit ; Notify µC/OS-II of end of ISR

            POP     DS                 ; Restore processor registers

            POP     ES

            POPA

            IRET                       ; Return to interrupted task

    ISRx    ENDP
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OSMboxAccept()
void *OSMboxAccept(OS_EVENT *pevent);

OSMboxAccept() allows you to see if a message is available from the desired mailbox. Unlike
OSMboxPend(), OSMboxAccept() does not suspend the calling task if a message is not available. In
other words, OSMboxAccept() is non-blocking.  If a message is available, the message is returned to
your application, and the content of the mailbox is cleared. This call is typically used by ISRs because
an ISR is not allowed to wait for a message at a mailbox.

Arguments
pevent is a pointer to the mailbox from which the message is received. This pointer is returned

to your application when the mailbox is created [see OSMboxCreate()].

Returned Value
A pointer to the message if one is available; NULL if the mailbox does not contain a message.

Notes/Warnings
1. Mailboxes must be created before they are used.

Chapter File Called from Code enabled by
10 OS_MBOX.C Task or ISR OS_MBOX_EN && OS_MBOX_ACCEPT_EN

Example

OS_EVENT *CommMbox;

void Task (void *pdata)

{

    void *msg;

    pdata = pdata;

    for (;;) {

        msg = OSMboxAccept(CommMbox); /* Check mailbox for a message */

        if (msg != (void *)0) {

          .                           /* Message received, process   */

          .

        } else {

          .                           /* Message not received, do .. */

          .                           /* .. something else */

        } 

       .

       .

    }

}
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OSMboxCreate()
OS_EVENT *OSMboxCreate(void *msg);

OSMboxCreate() creates and initializes a mailbox. A mailbox allows tasks or ISRs to send a
pointer-sized variable (message) to one or more tasks.

Arguments
msg is used to initialize the contents of the mailbox. The mailbox is empty when msg is a

NULL pointer. The mailbox initially contains a message when msg is non-NULL.

Returned Value
A pointer to the event control block allocated to the mailbox. If no event control block is available,
OSMboxCreate() returns a NULL pointer.

Notes/Warnings
1. Mailboxes must be created before they are used.

Chapter File Called from Code enabled by
10 OS_MBOX.C Task or startup code OS_MBOX_EN

Example

OS_EVENT *CommMbox;

void main (void)

{

        .

        .

        OSInit();                             /* Initialize uC/OS-II  */

        .

        .

        CommMbox = OSMboxCreate((void *)0);   /* Create COMM mailbox  */

        OSStart();                            /* Start Multitasking   */

}
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OSMboxDel()
OS_EVENT *OSMboxDel(OS_EVENT *pevent, INT8U opt, INT8U *err);

OSMboxDel() is used to delete a message mailbox.  This function is dangerous to use because multiple
tasks could attempt to access a deleted mailbox.  You should always use this function with great care.
Generally speaking, before you delete a mailbox, you must first delete all the tasks that can access the
mailbox.

Arguments
pevent is a pointer to the mailbox.  This pointer is returned to your application when the mail-

box is created [see OSMboxCreate()].

opt specifies whether you want to delete the mailbox only if there are no pending tasks
(OS_DEL_NO_PEND) or whether you always want to delete the mailbox regardless of
whether tasks are pending or not (OS_DEL_ALWAYS).  In this case, all pending task are
readied.

err is a pointer to a variable that is used to hold an error code.  The error code can be one of
the following:

OS_NO_ERR if the call is successful and the mailbox has been 
deleted.

OS_ERR_DEL_ISR if you attempt to delete the mailbox from an ISR.

OS_ERR_INVALID_OPT if you don’t specify one of the two options mentioned 
in the opt argument.

OS_ERR_TASK_WAITING One or more tasks is waiting on the mailbox.

OS_ERR_EVENT_TYPE if pevent is not pointing to a mailbox.

OS_ERR_PEVENT_NULL if no more OS_EVENT structures are available.

Returned Value
A NULL pointer if the mailbox is deleted or pevent if the mailbox is not deleted.  In the latter case, you
need to examine the error code to determine the reason.

Notes/Warnings
1. You should use this call with care because other tasks might expect the presence of the mailbox.

2. Interrupts are disabled when pended tasks are readied, which means that interrupt latency depends 
on the number of tasks that are waiting on the mailbox. 

3. OSMboxAccept() callers do not know that the mailbox has been deleted.

Chapter File Called from Code enabled by
10 OS_MBOX.C Task OS_MBOX_EN and OS_MBOX_DEL_EN
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Example

OS_EVENT *DispMbox;

void Task (void *pdata)

{

    INT8U  err;

    pdata = pdata;

    while (1) {

        .

        .

        DispMbox = OSMboxDel(DispMbox, OS_DEL_ALWAYS, &err);

        if (DispMbox == (OS_EVENT *)0) {

            /* Mailbox has been deleted */

        }

        .

        .

    }

}
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OSMboxPend()
void *OSMboxPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);

OSMboxPend() is used when a task expects to receive a message. The message is sent to the task either
by an ISR or by another task. The message received is a pointer-sized variable, and its use is application
specific. If a message is present in the mailbox when OSMboxPend() is called, the message is retrieved,
the mailbox is emptied, and the retrieved message is returned to the caller. If no message is present in
the mailbox, OSMboxPend() suspends the current task until either a message is received or a user-speci-
fied timeout expires. If a message is sent to the mailbox and multiple tasks are waiting for the message,
µC/OS-II resumes the highest priority task waiting to run. A pended task that has been suspended with
OSTaskSuspend() can receive a message. However, the task remains suspended until it is resumed by
calling OSTaskResume().

Arguments
pevent is a pointer to the mailbox from which the message is received. This pointer is returned

to your application when the mailbox is created [see OSMboxCreate()].

timeout allows the task to resume execution if a message is not received from the mailbox
within the specified number of clock ticks. A timeout value of 0 indicates that the task
wants to wait forever for the message. The maximum timeout is 65,535 clock ticks. The
timeout value is not synchronized with the clock tick. The timeout count begins decre-
menting on the next clock tick, which could potentially occur immediately.

err is a pointer to a variable that holds an error code. OSMboxPend() sets *err to one of the
following:

OS_NO_ERR if a message is received.

OS_TIMEOUT if a message is not received within the specified 
timeout period.

OS_ERR_EVENT_TYPE if pevent is not pointing to a mailbox.

OS_ERR_PEND_ISR if you call this function from an ISR and µC/OS-II 
suspends it. In general, you should not call 
OSMboxPend() from an ISR, but µC/OS-II checks for 
this situation anyway.

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

Returned Value
OSMboxPend() returns the message sent by either a task or an ISR, and *err is set to OS_NO_ERR. If a
message is not received within the specified timeout period, the returned message is a NULL pointer, and
*err is set to OS_TIMEOUT.

Chapter File Called from Code enabled by
10 OS_MBOX.C Task only OS_MBOX_EN
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Notes/Warnings
1. Mailboxes must be created before they are used.

2. You should not call OSMboxPend() from an ISR.

Example

OS_EVENT *CommMbox;

void CommTask(void *pdata)

{

      INT8U  err;

      void  *msg;

      pdata = pdata;

      for (;;) {

         .

         .

         msg = OSMboxPend(CommMbox, 10, &err);

         if (err == OS_NO_ERR) {

             .

             .  /* Code for received message                    */

             .

         } else {

             .

             .  /* Code for message not received within timeout */

             .

         } 

         .

         .

      }

}
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OSMboxPost()
INT8U OSMboxPost(OS_EVENT *pevent, void *msg);

OSMboxPost() sends a message to a task through a mailbox. A message is a pointer-sized variable and,
its use is application specific. If a message is already in the mailbox, an error code is returned indicating
that the mailbox is full. OSMboxPost() then immediately returns to its caller, and the message is not
placed in the mailbox. If any task is waiting for a message at the mailbox, the highest priority task wait-
ing receives the message. If the task waiting for the message has a higher priority than the task sending
the message, the higher priority task is resumed, and the task sending the message is suspended. In other
words, a context switch occurs.

Arguments
pevent is a pointer to the mailbox into which the message is deposited. This pointer is returned

to your application when the mailbox is created [see OSMboxCreate()].

msg is the actual message sent to the task. msg is a pointer-sized variable and is application
specific. You must never post a NULL pointer because this pointer indicates that the mail-
box is empty.

Returned Value
OSMboxPost() returns one of these error codes:

OS_NO_ERR if the message is deposited in the mailbox.

OS_MBOX_FULL if the mailbox already contains a message.

OS_ERR_EVENT_TYPE if pevent is not pointing to a mailbox.

OS_ERR_PEVENT_NULL if pevent is a pointer to NULL.

OS_ERR_POST_NULL_PTR if you are attempting to post a NULL pointer.  By 
convention a NULL pointer is not supposed to point to 
anything.

Notes/Warnings
1. Mailboxes must be created before they are used.

2. You must never post a NULL pointer because this pointer indicates that the mailbox is empty.

Chapter File Called from Code enabled by
10 OS_MBOX.C Task or ISR OS_MBOX_EN && OS_MBOX_POST_EN
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Example

OS_EVENT *CommMbox;

INT8U     CommRxBuf[100];

void CommTaskRx (void *pdata)

{

      INT8U  err;

      pdata = pdata;

      for (;;) {

         .

         .

          err = OSMboxPost(CommMbox, (void *)&CommRxBuf[0]); 

         .

         .

      }

}
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OSMboxPostOpt()
INT8U OSMboxPostOpt(OS_EVENT *pevent, void *msg, INT8U opt);

OSMboxPostOpt() works just like OSMboxPost() except that it allows you to post a message to multi-
ple tasks. In other words, OSMboxPostOpt() allows the message posted to be broadcast to all tasks wait-
ing on the mailbox. OSMboxPostOpt() can actually replace OSMboxPost() because it can emulate
OSMboxPost().

OSMboxPostOpt() is used to send a message to a task through a mailbox. A message is a
pointer-sized variable, and its use is application specific.  If a message is already in the mailbox, an
error code is returned indicating that the mailbox is full. OSMboxPostOpt() then immediately
returns to its caller, and the message is not placed in the mailbox. If any task is waiting for a mes-
sage at the mailbox, OSMboxPostOpt() allows you either to post the message to the highest prior-
ity task waiting at the mailbox (opt set to OS_POST_OPT_NONE) or to all tasks waiting at the
mailbox (opt is set to OS_POST_OPT_BROADCAST). In either case, scheduling occurs and, if any of
the tasks that receives the message have a higher priority than the task that is posting the message,
then the higher priority task is resumed, and the sending task is suspended.  In other words, a con-
text switch occurs.

Arguments
pevent is a pointer to the mailbox.  This pointer is returned to your application when the mail-

box is created [see OSMboxCreate()].

msg is the actual message sent to the task(s). msg is a pointer-sized variable and is applica-
tion specific.  You must never post a NULL pointer because this pointer indicates that the
mailbox is empty.

opt specifies whether you want to send the message to the highest priority task waiting at
the mailbox (when opt is set to OS_POST_OPT_NONE) or to all tasks waiting at the mail-
box (when opt is set to OS_POST_OPT_BROADCAST).

Returned Value
err is a pointer to a variable that is used to hold an error code.  The error code can be one of

the following:

OS_NO_ERR if the call is successful and the message has been sent.

OS_MBOX_FULL if the mailbox already contains a message.  You can 
only send one message at a time to a mailbox, and thus 
the message must be consumed before you are allowed 
to send another one.

OS_ERR_EVENT_TYPE if pevent is not pointing to a mailbox.

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

OS_ERR_POST_NULL_PTR if you are attempting to post a NULL pointer.  By 
convention, a NULL pointer is not supposed to point to 
anything.

Chapter File Called from Code enabled by
10 OS_MBOX.C Task or ISR OS_MBOX_EN and OS_MBOX_POST_OPT_EN
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Notes/Warnings
1. Mailboxes must be created before they are used.

2. You must never post a NULL pointer to a mailbox because this pointer indicates that the mailbox is 
empty.

3. If you need to use this function and want to reduce code space, you can disable code generation of 
OSMboxPost() because OSMboxPostOpt() can emulate OSMboxPost().

4. The execution time of OSMboxPostOpt() depends on the number of tasks waiting on the mailbox if 
you set opt to OS_POST_OPT_BROADCAST.

Example
OS_EVENT *CommMbox;

INT8U     CommRxBuf[100];

void CommRxTask (void *pdata)

{

    INT8U  err;

    pdata = pdata;

    for (;;) {

        .

        .

        err = OSMboxPostOpt(CommMbox, (void *)&CommRxBuf[0], OS_POST_OPT_BROADCAST);

        .

        .

    }

}
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OSMboxQuery()
INT8U OSMboxQuery(OS_EVENT *pevent, OS_MBOX_DATA *pdata);

OSMboxQuery() obtains information about a message mailbox. Your application must allocate an
OS_MBOX_DATA data structure, which is used to receive data from the event control block of the message
mailbox. OSMboxQuery() allows you to determine whether any tasks are waiting for a message at the
mailbox and how many tasks are waiting (by counting the number of 1s in the .OSEventTbl[] field).
You can also examine the current contents of the mailbox. Note that the size of .OSEventTbl[] is estab-
lished by the #define constant OS_EVENT_TBL_SIZE (see uCOS_II.H).

Arguments
pevent is a pointer to the mailbox. This pointer is returned to your application when the mail-

box is created [see OSMboxCreate()].

pdata is a pointer to a data structure of type OS_MBOX_DATA, which contains the following
fields:

Returned Value
OSMboxQuery() returns one of these error codes:

OS_NO_ERR if the call is successful.

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

OS_ERR_EVENT_TYPE if you don’t pass a pointer to a message mailbox.

Notes/Warnings
1. Message mailboxes must be created before they are used.

Chapter File Called from Code enabled by
10 OS_MBOX.C Task or ISR OS_MBOX_EN && OS_MBOX_QUERY_EN

void  *OSMsg;                  /* Copy of the message stored in the mailbox */

INT8U  OSEventTbl[OS_EVENT_TBL_SIZE];     /* Copy of the mailbox wait list  */

INT8U  OSEventGrp;
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Example

OS_EVENT *CommMbox;

void Task (void *pdata)

{

      OS_MBOXDATA mbox_data;

      INT8U       err;

      pdata = pdata;

      for (;;) {

         .

         .

         err = OSMboxQuery(CommMbox, &mbox_data);

         if (err == OS_NO_ERR) {

           .   /* Mailbox contains a message if mbox_data.OSMsg is not NULL*/

         }

         .

         .

      }

}
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OSMemCreate()
OS_MEM *OSMemCreate(void *addr, INT32U nblks, INT32U blksize, INT8U *err);

OSMemCreate() creates and initializes a memory partition. A memory partition contains a user-specified
number of fixed-size memory blocks. Your application can obtain one of these memory blocks and,
when done, release the block back to the partition.

Arguments
addr is the address of the start of a memory area that is used to create fixed-size memory

blocks. Memory partitions can be created either using static arrays or malloc() during
startup.

nblks contains the number of memory blocks available from the specified partition. You must
specify at least two memory blocks per partition.

blksize specifies the size (in bytes) of each memory block within a partition. A memory block
must be large enough to hold at least a pointer.

err is a pointer to a variable that holds an error code. OSMemCreate() sets *err to:

OS_NO_ERR if the memory partition is created successfully

OS_MEM_INVALID_ADDR if you are specifying an invalid address (i.e., addr is a 
NULL pointer)

OS_MEM_INVALID_PART if a free memory partition is not available

OS_MEM_INVALID_BLKS if you don’t specify at least two memory blocks per 
partition

OS_MEM_INVALID_SIZE if you don’t specify a block size that can contain at 
least a pointer variable

Returned Value
OSMemCreate() returns a pointer to the created memory-partition control block if one is available. If no
memory-partition control block is available, OSMemCreate() returns a NULL pointer.

Notes/Warnings
1. Memory partitions must be created before they are used.

Chapter File Called from Code enabled by
12 OS_MEM.C Task or startup code OS_MEM_EN
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Example

OS_MEM *CommMem;

INT8U   CommBuf[16][128];

void main (void)

{

      INT8U err;

      OSInit();                        /* Initialize µC/OS-II           */

      .

      .

      CommMem = OSMemCreate(&CommBuf[0][0], 16, 128, &err);

      .

      .

      OSStart();                       /* Start Multitasking            */

}
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OSMemGet()
void *OSMemGet(OS_MEM *pmem, INT8U *err);

OSMemGet obtains a memory block from a memory partition. It is assumed that your application knows
the size of each memory block obtained. Also, your application must return the memory block [using
OSMemPut()] when it no longer needs it. You can call OSMemGet() more than once until all memory
blocks are allocated.

Arguments
pmem is a pointer to the memory-partition control block that is returned to your application

from the OSMemCreate() call.

err is a pointer to a variable that holds an error code. OSMemGet() sets *err to one of the
following:

OS_NO_ERR if a memory block is available and returned to your 
application.

OS_MEM_NO_FREE_BLKS if the memory partition doesn’t contain any more 
memory blocks to allocate.

OS_MEM_INVALID_PMEM if pmem is a NULL pointer.

Returned Value
OSMemGet() returns a pointer to the allocated memory block if one is available. If no memory block is
available from the memory partition, OSMemGet() returns a NULL pointer.

Notes/Warnings
1. Memory partitions must be created before they are used.

Chapter File Called from Code enabled by
12 OS_MEM.C Task or ISR OS_MEM_EN
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Example

OS_MEM *CommMem;

void Task (void *pdata)

{

      INT8U *msg;

      pdata = pdata;

      for (;;) {

         msg = OSMemGet(CommMem, &err);

         if (msg != (INT8U *)0) {

            .                      /* Memory block allocated, use it. */

            .

         } 

         .

         .

      }

}
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OSMemPut()
INT8U OSMemPut(OS_MEM *pmem, void *pblk);

OSMemPut() returns a memory block to a memory partition. It is assumed that you return the memory
block to the appropriate memory partition.

Arguments
pmem is a pointer to the memory-partition control block that is returned to your application

from the OSMemCreate() call.

pblk is a pointer to the memory block to be returned to the memory partition.

Returned Value
OSMemPut() returns one of the following error codes:

OS_NO_ERR if a memory block is available and returned to your 
application.

OS_MEM_FULL if the memory partition can not accept more memory 
blocks. This code is surely an indication that 
something is wrong because you are returning more 
memory blocks than you obtained using OSMemGet().

OS_MEM_INVALID_PMEM if pmem is a NULL pointer.

OS_MEM_INVALID_PBLK if pblk is a NULL pointer.

Notes/Warnings
1. Memory partitions must be created before they are used.

2. You must return a memory block to the proper memory partition.

Chapter File Called from Code enabled by
12 OS_MEM.C Task or ISR OS_MEM_EN
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Example

OS_MEM *CommMem;

INT8U  *CommMsg;

void Task (void *pdata)

{

      INT8U err;

      pdata = pdata;

      for (;;) {

         err = OSMemPut(CommMem, (void *)CommMsg);

         if (err == OS_NO_ERR) {

            .                        /* Memory block released        */

            .

         } 

         .

         .

      }

}
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OSMemQuery()
INT8U OSMemQuery(OS_MEM *pmem, OS_MEM_DATA *pdata);

OSMemQuery() obtains information about a memory partition. Basically, this function returns the
same information found in the OS_MEM data structure but in a new data structure called OS_MEM_DATA.
OS_MEM_DATA also contains an additional field that indicates the number of memory blocks in use.

Arguments
pmem is a pointer to the memory-partition control block that is returned to your application

from the OSMemCreate() call.

pdata is a pointer to a data structure of type OS_MEM_DATA, which contains the following fields

Returned Value
OSMemQuery() returns one of the following error codes:

OS_NO_ERR if a memory block is available and returned to your 
application.

OS_MEM_INVALID_PMEM if pmem is a NULL pointer.

OS_MEM_INVALID_PDATA if pdata is a NULL pointer.

Notes/Warnings
1. Memory partitions must be created before they are used.

Chapter File Called from Code enabled by
12 OS_MEM.C Task or ISR OS_MEM_EN && OS_MEM_QUERY_EN

void   *OSAddr;     /* Points to beginning address of the memory partition   */

void   *OSFreeList; /* Points to beginning of the free list of memory blocks */

INT32U  OSBlkSize;  /* Size (in bytes) of each memory block                  */

INT32U  OSNBlks;    /* Total number of blocks in the partition               */

INT32U  OSNFree;    /* Number of memory blocks free                          */

INT32U  OSNUsed;    /* Number of memory blocks used                          */
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Example

OS_MEM      *CommMem;

void Task (void *pdata)

{

      INT8U        err;

      OS_MEM_DATA  mem_data;

      pdata = pdata;

      for (;;) {

         .

         .

         err = OSMemQuery(CommMem, &mem_data);

         .

         .

      }

}
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OSMutexAccept()
INT8U OSMutexAccept(OS_EVENT *pevent, INT8U *err);

OSMutexAccept() allows you to check to see if a resource is available. Unlike OSMutexPend(),
OSMutexAccept() does not suspend the calling task if the resource is not available. In other words,
OSMutexAccept() is non-blocking.

Arguments
pevent is a pointer to the mutex that guards the resource.  This pointer is returned to your appli-

cation when the mutex is created [see OSMutexCreate()].

err is a pointer to a variable used to hold an error code.  OSMutexAccept() sets *err to one
of the following:

OS_NO_ERR if the call is successful.

OS_ERR_EVENT_TYPE if pevent is not pointing to a mutex.

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

OS_ERR_PEND_ISR if you call OSMutexAccept() from an ISR.

Returned Value
If the mutex is available, OSMutexAccept() returns 1. If the mutex is owned by another task,
OSMutexAccept() returns 0.

Notes/Warnings
1. Mutexes must be created before they are used.

2. This function must not be called by an ISR.

3. If you acquire the mutex through OSMutexAccept(), you must call OSMutexPost() to release the 
mutex when you are done with the resource.

Chapter File Called from Code enabled by
8 OS_MUTEX.C Task OS_MUTEX_EN
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Example

OS_EVENT *DispMutex;

void Task (void *pdata)

{

    INT8U  err;

    INT8U  value;

    pdata = pdata;

    for (;;) {

        value = OSMutexAccept(DispMutex, &err);

        if (value == 1) {

            .                          /* Resource available, process */

            .

        } else {

            .                          /* Resource NOT available      */

            .

        } 

        .

        .

    }

}
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OSMutexCreate()
OS_EVENT *OSMutexCreate(INT8U prio, INT8U *err);

OSMutexCreate() is used to create and initialize a mutex.  A mutex is used to gain exclusive access to a
resource.

Arguments
prio is the priority inheritance priority (PIP) that is used when a high priority task attempts

to acquire the mutex that is owned by a low priority task.  In this case, the priority of the
low priority task is raised to the PIP until the resource is released.

err is a pointer to a variable that is used to hold an error code.  The error code can be one of
the following:

OS_NO_ERR if the call is successful and the mutex has been created.

OS_ERR_CREATE_ISR if you attempt to create a mutex from an ISR.

OS_PRIO_EXIST if a task at the specified priority inheritance priority 
already exists.

OS_ERR_PEVENT_NULL if no more OS_EVENT structures are available.

OS_PRIO_INVALID if you specify a priority with a higher number than
OS_LOWEST_PRIO.

Returned Value
A pointer to the event control block allocated to the mutex. If no event control block is available,
OSMutexCreate() returns a NULL pointer.

Notes/Warnings
1. Mutexes must be created before they are used.

2. You must make sure that prio has a higher priority than any of the tasks that use the mutex to 
access the resource.  For example, if three tasks of priority 20, 25, and 30 are going to use the 
mutex, then prio must be a number lower than 20.  In addition, there must not already be a task 
created at the specified priority.

Chapter File Called from Code enabled by
8 OS_MUTEX.C Task or startup code OS_MUTEX_EN
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Example

OS_EVENT *DispMutex;

void main (void)

{

    INT8U  err;

    .

    .

    OSInit();                             /* Initialize µC/OS-II           */

    .

    .

    DispMutex = OSMutexCreate(20, &err);  /* Create Display Mutex          */

    .

    .

    OSStart();                            /* Start Multitasking            */

}
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OSMutexDel()
OS_EVENT *OSMutexDel(OS_EVENT *pevent, INT8U opt, INT8U *err);

OSMutexDel() is used to delete a mutex. This function is dangerous to use because multiple tasks could
attempt to access a deleted mutex. You should always use this function with great care. Generally speak-
ing, before you delete a mutex, you must first delete all the tasks that can access the mutex.

Arguments
pevent is a pointer to the mutex.  This pointer is returned to your application when the mutex is

created [see OSMutexCreate()].

opt specifies whether you want to delete the mutex only if there are no pending tasks
(OS_DEL_NO_PEND) or whether you always want to delete the mutex regardless of
whether tasks are pending or not (OS_DEL_ALWAYS).  In this case, all pending task are
readied.

err is a pointer to a variable that is used to hold an error code.  The error code can be one of
the following:

OS_NO_ERR if the call is successful and the mutex has been deleted.

OS_ERR_DEL_ISR if you attempt to delete a mutex from an ISR.

OS_ERR_INVALID_OPT if you don’t specify one of the two options mentioned 
in the opt argument.

OS_ERR_TASK_WAITING if one or more task are waiting on the mutex and you 
specify OS_DEL_NO_PEND.

OS_ERR_EVENT_TYPE if pevent is not pointing to a mutex.

OS_ERR_PEVENT_NULL if no more OS_EVENT structures are available.

Returned Value
A NULL pointer if the mutex is deleted or pevent if the mutex is not deleted. In the latter case, you need 
to examine the error code to determine the reason.

Notes/Warnings
1. You should use this call with care because other tasks might expect the presence of the mutex.

Chapter File Called from Code enabled by
8 OS_MUTEX.C Task OS_MUTEX_EN and OS_MUTEX_DEL_EN
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Example

OS_EVENT *DispMutex;

void Task (void *pdata)

{

    INT8U  err;

    pdata = pdata;

    while (1) {

        .

        .

        DispMutex = OSMutexDel(DispMutex, OS_DEL_ALWAYS, &err);

        if (DispMutex == (OS_EVENT *)0) {

            /* Mutex has been deleted */

        }

        .

        .

    }

}



OSMutexPend()  447

16
OSMutexPend()
void OSMutexPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);

OSMutexPend() is used when a task desires to get exclusive access to a resource.  If a task calls
OSMutexPend() and the mutex is available, then OSMutexPend() gives the mutex to the caller and
returns to its caller.  Note that nothing is actually given to the caller except for the fact that if err is set
to OS_NO_ERR, the caller can assume that it owns the mutex.  However, if the mutex is already owned by
another task, OSMutexPend() places the calling task in the wait list for the mutex.  The task thus waits
until the task that owns the mutex releases the mutex and thus the resource or until the specified timeout
expires.  If the mutex is signaled before the timeout expires, µC/OS-II resumes the highest priority task
that is waiting for the mutex.  Note that if the mutex is owned by a lower priority task, then
OSMutexPend() raises the priority of the task that owns the mutex to the PIP, as specified when you
created the mutex [see OSMutexCreate()].

Arguments
pevent is a pointer to the mutex.  This pointer is returned to your application when the mutex is

created [see OSMutexCreate()].

timeout is used to allow the task to resume execution if the mutex is not signaled (i.e., posted to)
within the specified number of clock ticks.  A timeout value of 0 indicates that the task
desires to wait forever for the mutex.  The maximum timeout is 65,535 clock ticks.  The
timeout value is not synchronized with the clock tick.  The timeout count starts being
decremented on the next clock tick, which could potentially occur immediately.

err is a pointer to a variable that is used to hold an error code.  OSMutexPend() sets *err to
one of the following:

OS_NO_ERR if the call is successful and the mutex is available.

OS_TIMEOUT if the mutex is not available within the specified 
timeout.

OS_ERR_EVENT_TYPE if you don’t pass a pointer to a mutex to 
OSMutexPend().

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

OS_ERR_PEND_ISR if you attempt to acquire the mutex from an ISR.

Returned Value
none

Chapter File Called from Code enabled by
8 OS_MUTEX.C Task only OS_MUTEX_EN
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Notes/Warnings
1. Mutexes must be created before they are used.

2. You should not suspend the task that owns the mutex, have the mutex owner wait on any other 
µC/OS-II objects (i.e., semaphore, mailbox, or queue), and delay the task that owns the mutex.  In 
other words, your code should hurry up and release the resource as quickly as possible.

Example

OS_EVENT *DispMutex;

void  DispTask (void *pdata)

{

    INT8U  err;

    pdata = pdata;

    for (;;) {

        .

        .

        OSMutexPend(DispMutex, 0, &err); 

        .                             /* The only way this task continues is if … */

        .                             /* … the mutex is available or signaled!    */

    }

}
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OSMutexPost()
INT8U OSMutexPost(OS_EVENT *pevent);

A mutex is signaled (i.e., released) by calling OSMutexPost().  You call this function only if you
acquire the mutex by first calling either OSMutexAccept() or OSMutexPend().  If the priority of the task
that owns the mutex has been raised when a higher priority task attempts to acquire the mutex, the orig-
inal task priority of the task is restored.  If one or more tasks are waiting for the mutex, the mutex is
given to the highest priority task waiting on the mutex.  The scheduler is then called to determine if the
awakened task is now the highest priority task ready to run, and if so, a context switch is done to run the
readied task. If no task is waiting for the mutex, the mutex value is simply set to available (0xFF).

Arguments
pevent is a pointer to the mutex.  This pointer is returned to your application when the mutex is

created [see OSMutexCreate()].

Returned Value
OSMutexPost() returns one of these error codes:

OS_NO_ERR if the call is successful and the mutex is released.

OS_ERR_EVENT_TYPE if you don’t pass a pointer to a mutex to 
OSMutexPost().

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

OS_ERR_POST_ISR if you attempt to call OSMutexPost() from an ISR.

OS_ERR_NOT_MUTEX_OWNER if the task posting (i.e., signaling the mutex) doesn’t 
actually own the mutex.

Notes/Warnings
1. Mutexes must be created before they are used.

2. You cannot call this function from an ISR.

Chapter File Called from Code enabled by
8 OS_MUTEX.C Task OS_MUTEX_EN
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Example

OS_EVENT  *DispMutex;

void  TaskX (void *pdata)

{

    INT8U  err;

    pdata = pdata;

    for (;;) {

        .

        .

        err = OSMutexPost(DispMutex);

        switch (err) {

           case OS_NO_ERR: /* Mutex signaled       */

                .

                .

                break;

           case OS_ERR_EVENT_TYPE:

                .

                .

                break;

           case OS_ERR_PEVENT_NULL:

                .

                .

                break;

           case OS_ERR_POST_ISR:

                .

                .

                break;

        }

        .

        .

    }

}
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OSMutexQuery()
INT8U OSMutexQuery(OS_EVENT *pevent, OS_MUTEX_DATA *pdata);

OSMutexQuery() is used to obtain run-time information about a mutex.  Your application must allocate
an OS_MUTEX_DATA data structure that is used to receive data from the event control block of the mutex.
OSMutexQuery() allows you to determine whether any task is waiting on the mutex, how many tasks are
waiting (by counting the number of 1s) in the .OSEventTbl[] field, obtain the PIP, and determine
whether the mutex is available (1) or not (0).  Note that the size of .OSEventTbl[] is established by the
#define constant OS_EVENT_TBL_SIZE (see uCOS_II.H).

Arguments
pevent is a pointer to the mutex.  This pointer is returned to your application when the mutex is

created [see OSMutexCreate()].

pdata is a pointer to a data structure of type OS_MUTEX_DATA, which contains the following
fields

Returned Value
OSMutexQuery() returns one of these error codes:

OS_NO_ERR if the call is successful.

OS_ERR_EVENT_TYPE if you don’t pass a pointer to a mutex to 
OSMutexQuery().

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

OS_ERR_QUERY_ISR if you attempt to call OSMutexQuery() from an ISR.

Notes/Warnings
1. Mutexes must be created before they are used.

2. You cannot call this function from an ISR.

Chapter File Called from Code enabled by
8 OS_MUTEX.C Task OS_MUTEX_EN && OS_MUTEX_QUERY_EN

INT8U  OSMutexPIP;    /* The PIP of the mutex                        */

INT8U  OSOwnerPrio;   /* The priority of the mutex owner             */

INT8U  OSValue;       /* The current mutex value, 1 means available, */
                      /* 0 means unavailable                         */

INT8U  OSEventGrp;    /* Copy of the mutex wait list                 */

INT8U  OSEventTbl[OS_EVENT_TBL_SIZE];
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Example
In this example, we check the contents of the mutex to determine the highest priority task that is waiting
for it.

OS_EVENT *DispMutex;

void Task (void *pdata)

{

    OS_MUTEX_DATA mutex_data;

    INT8U         err;

    INT8U         highest;       /* Highest priority task waiting on mutex */

    INT8U         x;

    INT8U         y;

    pdata = pdata;

    for (;;) {

        .

        .

        err = OSMutexQuery(DispMutex, &mutex_data);

        if (err == OS_NO_ERR) {

            if (mutex_data.OSEventGrp != 0x00) {

                y       = OSUnMapTbl[mutex_data.OSEventGrp]; 

                x       = OSUnMapTbl[mutex_data.OSEventTbl[y]];

                highest = (y << 3) + x;  

                .

                .

            }

        }

        .

        .

    }

}
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OSQAccept()
void *OSQAccept(OS_EVENT *pevent);

OSQAccept() checks to see if a message is available in the desired message queue. Unlike OSQPend(),
OSQAccept() does not suspend the calling task if a message is not available. In other words,
OSQAccept() is non-blocking.  If a message is available, it is extracted from the queue and returned to
your application. This call is typically used by ISRs because an ISR is not allowed to wait for messages
at a queue.

Arguments
pevent is a pointer to the message queue from which the message is received. This pointer is

returned to your application when the message queue is created [see OSQCreate()].

Returned Value
A pointer to the message if one is available; NULL if the message queue does not contain a message.

Notes/Warnings
1. Message queues must be created before they are used.

Chapter File Called from Code enabled by
11 OS_Q.C Task or ISR OS_Q_EN

Example

OS_EVENT *CommQ;

void Task (void *pdata)

{

      void *msg;

      pdata = pdata;

      for (;;) {

         msg = OSQAccept(CommQ);      /* Check queue for a message   */

         if (msg != (void *)0) {

            .                         /* Message received, process   */

            .

         } else {

            .                         /* Message not received, do .. */

            .                         /* .. something else           */

         }

         .

         .

      }

}
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OSQCreate()
OS_EVENT *OSQCreate(void **start, INT8U size);

OSQCreate() creates a message queue. A message queue allows tasks or ISRs to send pointer-sized
variables (messages) to one or more tasks. The meaning of the messages sent are application specific.

Arguments
start is the base address of the message storage area. A message storage area is declared as

an array of pointers to voids.

size is the size (in number of entries) of the message storage area.

Returned Value
OSQCreate() returns a pointer to the event control block allocated to the queue. If no event control
block is available, OSQCreate() returns a NULL pointer.

Notes/Warnings
1. Queues must be created before they are used.

Chapter File Called from Code enabled by
11 OS_Q.C Task or startup code OS_Q_EN

Example

OS_EVENT *CommQ;

void     *CommMsg[10];

void main (void)

{

       OSInit();                                  /* Initialize _C/OS-II   */

       .

       .

       CommQ = OSQCreate(&CommMsg[0], 10);        /* Create COMM Q         */

       .

       .

       OSStart();                                 /* Start Multitasking    */

}
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OSQDel()
OS_EVENT *OSQDel(OS_EVENT *pevent, INT8U opt, INT8U *err);

OSQDel() is used to delete a message queue.  This function is dangerous to use because multiple tasks 
could attempt to access a deleted queue.  You should always use this function with great care.  Generally 
speaking, before you delete a queue, you must first delete all the tasks that can access the queue.

Arguments
pevent is a pointer to the queue.  This pointer is returned to your application when the queue is

created [see OSQCreate()].

opt specifies whether you want to delete the queue only if there are no pending tasks
(OS_DEL_NO_PEND) or whether you always want to delete the queue regardless of
whether tasks are pending or not (OS_DEL_ALWAYS).  In this case, all pending task are
readied.

err is a pointer to a variable that is used to hold an error code.  The error code can be one of
the following: 

OS_NO_ERR if the call is successful and the queue has been deleted.

OS_ERR_DEL_ISR if you attempt to delete the queue from an ISR.

OS_ERR_INVALID_OPT if you don’t specify one of the two options mentioned 
in the opt argument.

OS_ERR_TASK_WAITING if one or more tasks are waiting for messages at the 
message queue.

OS_ERR_EVENT_TYPE if pevent is not pointing to a queue.

OS_ERR_PEVENT_NULL if no more OS_EVENT structures are available.

Returned Value
A NULL pointer if the queue is deleted or pevent if the queue is not deleted.  In the latter case, you need 
to examine the error code to determine the reason.

Notes/Warnings
1. You should use this call with care because other tasks might expect the presence of the queue.

2. Interrupts are disabled when pended tasks are readied, which means that interrupt latency depends 
on the number of tasks that are waiting on the queue.

Chapter File Called from Code enabled by
11 OS_Q.C Task OS_Q_EN and OS_Q_DEL_EN
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Example

OS_EVENT *DispQ;

void Task (void *pdata)

{

    INT8U  err;

    pdata = pdata;

    while (1) {

        .

        .

        DispQ = OSQDel(DispQ, OS_DEL_ALWAYS, &err);

        if (DispQ == (OS_EVENT *)0) {

            /* Queue has been deleted */

        }

        .

        .

    }

}
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OSQFlush()
INT8U *OSQFlush(OS_EVENT *pevent);

OSQFlush() empties the contents of the message queue and eliminates all the messages sent to the
queue. This function takes the same amount of time to execute regardless of whether tasks are waiting
on the queue (and thus no messages are present) or the queue contains one or more messages.

Arguments
pevent is a pointer to the message queue. This pointer is returned to your application when the

message queue is created [see OSQCreate()].

Returned Value
OSQFlush() returns one of the following codes:

OS_NO_ERR if the message queue is flushed.

OS_ERR_EVENT_TYPE if you attempt to flush an object other than a message 
queue.

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

Notes/Warnings
1. Queues must be created before they are used.

Chapter File Called from Code enabled by
11 OS_Q.C Task or ISR OS_Q_EN && OS_Q_FLUSH_EN

Example

OS_EVENT *CommQ;

void main (void)

{

       INT8U err;

       OSInit();                           /* Initialize µC/OS-II   */

       .

       .

       err = OSQFlush(CommQ);

       .

       .

       OSStart();                          /* Start Multitasking    */

}
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OSQPend()
void *OSQPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);

OSQPend() is used when a task wants to receive messages from a queue. The messages are sent to the
task either by an ISR or by another task. The messages received are pointer-sized variables, and their
use is application specific. If at least one message is present at the queue when OSQPend() is called, the
message is retrieved and returned to the caller. If no message is present at the queue, OSQPend() sus-
pends the current task until either a message is received or a user-specified timeout expires. If a message
is sent to the queue and multiple tasks are waiting for such a message, then µC/OS-II resumes the high-
est priority task that is waiting. A pended task that has been suspended with OSTaskSuspend() can
receive a message. However, the task remains suspended until it is resumed by calling OSTaskResume().

Arguments
pevent is a pointer to the queue from which the messages are received. This pointer is returned

to your application when the queue is created [see OSQCreate()].

timeout allows the task to resume execution if a message is not received from the mailbox
within the specified number of clock ticks. A timeout value of 0 indicates that the task
wants to wait forever for the message. The maximum timeout is 65,535 clock ticks. The
timeout value is not synchronized with the clock tick. The timeout count starts decre-
menting on the next clock tick, which could potentially occur immediately.

err is a pointer to a variable used to hold an error code. OSQPend() sets *err to one of the
following:

OS_NO_ERR if a message is received.

OS_TIMEOUT if a message is not received within the specified 
timeout.

OS_ERR_EVENT_TYPE if pevent is not pointing to a message queue.

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

OS_ERR_PEND_ISR if you call this function from an ISR and µC/OS-II has 
to suspend it. In general, you should not call 
OSQPend() from an ISR. µC/OS-II checks for this 
situation anyway.

Returned Value
OSQPend() returns a message sent by either a task or an ISR, and *err is set to OS_NO_ERR. If a timeout
occurs, OSQPend() returns a NULL pointer and sets *err to OS_TIMEOUT.

Chapter File Called from Code enabled by
11 OS_Q.C Task only OS_Q_EN
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Notes/Warnings
1. Queues must be created before they are used.

2. You should not call OSQPend() from an ISR.

Example

OS_EVENT *CommQ;

void CommTask(void *data)

{

      INT8U  err;

      void  *msg;

      pdata = pdata;

      for (;;) {

         .

         .

         msg = OSQPend(CommQ, 100, &err);

         if (err == OS_NO_ERR) {

            .

            .         /* Message received within 100 ticks!         */

            .

         } else {

            .

            .         /* Message not received, must have timed out  */

            .

         }

         .   

         .

      }

}
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OSQPost()
INT8U OSQPost(OS_EVENT *pevent, void *msg);

OSQPost() sends a message to a task through a queue. A message is a pointer-sized variable, and its use
is application specific. If the message queue is full, an error code is returned to the caller. In this case,
OSQPost() immediately returns to its caller, and the message is not placed in the queue. If any task is
waiting for a message at the queue, the highest priority task receives the message. If the task waiting for
the message has a higher priority than the task sending the message, the higher priority task resumes,
and the task sending the message is suspended; that is, a context switch occurs. Message queues are
first-in first-out (FIFO), which means that the first message sent is the first message received.

Arguments
pevent is a pointer to the queue into which the message is deposited. This pointer is returned to

your application when the queue is created [see OSQCreate()].

msg is the actual message sent to the task. msg is a pointer-sized variable and is application
specific. You must never post a NULL pointer.

Returned Value
OSQPost() returns one of these error codes:

OS_NO_ERR if the message is deposited in the queue.

OS_Q_FULL if the queue is already full.

OS_ERR_EVENT_TYPE if pevent is not pointing to a message queue.

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

OS_ERR_POST_NULL_PTR if you are posting a NULL pointer. By convention, a 
NULL pointer is not supposed to point to anything valid.

Notes/Warnings
1. Queues must be created before they are used.

2. You must never post a NULL pointer.

Chapter File Called from Code enabled by
11 OS_Q.C Task or ISR OS_Q_EN && OS_Q_POST_EN
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Example

OS_EVENT *CommQ;

INT8U     CommRxBuf[100];

void CommTaskRx (void *pdata)

{

      INT8U  err;

      pdata = pdata;

      for (;;) {

         .

         .

         err = OSQPost(CommQ, (void *)&CommRxBuf[0]);

         switch (err) {
             case OS_NO_ERR:

                  /* Message was deposited into queue    */
                  break;

             case OS_Q_FULL:

                  /* Queue is full                       */

                  Break;

            .

         }

         .

         .

      }

}
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OSQPostFront()
INT8U OSQPostFront(OS_EVENT *pevent, void *msg);

OSQPostFront() sends a message to a task through a queue. OSQPostFront() behaves very much like
OSQPost(), except that the message is inserted at the front of the queue. This means that
OSQPostFront() makes the message queue behave like a last-in first-out (LIFO) queue instead of a
first-in first-out (FIFO) queue. The message is a pointer-sized variable, and its use is application
specific. If the message queue is full, an error code is returned to the caller. OSQPostFront()
immediately returns to its caller, and the message is not placed in the queue. If any tasks are waiting for
a message at the queue, the highest priority task receives the message. If the task waiting for the
message has a higher priority than the task sending the message, the higher priority task is resumed, and
the task sending the message is suspended; that is, a context switch occurs.

Arguments
pevent is a pointer to the queue into which the message is deposited. This pointer is returned to

your application when the queue is created [see OSQCreate()].

msg is the actual message sent to the task. msg is a pointer-sized variable and is application
specific. You must never post a NULL pointer.

Returned Value
OSQPostFront() returns one of these error codes:

OS_NO_ERR if the message is deposited in the queue.

OS_Q_FULL if the queue is already full.

OS_ERR_EVENT_TYPE if pevent is not pointing to a message queue.

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

OS_ERR_POST_NULL_PTR if you are posting a NULL pointer.  By convention, a 
NULL pointer is not supposed to point to anything valid.

Notes/Warnings
1. Queues must be created before they are used.

2. You must never post a NULL pointer.

Chapter File Called from Code enabled by
11 OS_Q.C Task or ISR OS_Q_EN && OS_Q_POST_FRONT_EN
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Example

OS_EVENT *CommQ;

INT8U     CommRxBuf[100];

void CommTaskRx (void *pdata)

{

      INT8U  err;

      pdata = pdata;

      for (;;) {

         .

         .

         err = OSQPostFront(CommQ, (void *)&CommRxBuf[0]);

         switch (err) {
             case OS_NO_ERR:

                  /* Message was deposited into queue    */
                  break;

             case OS_Q_FULL:

                  /* Queue is full                       */

                  break;

            .

         }

         .

         .

      }

}
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OSQPostOpt()
INT8U OSQPostOpt(OS_EVENT *pevent, void *msg, INT8U opt);

OSQPostOpt() is used to send a message to a task through a queue.  A message is a pointer-sized vari-
able, and its use is application specific.  If the message queue is full, an error code is returned indicating
that the queue is full. OSQPostOpt() then immediately returns to its caller, and the message is not
placed in the queue.  If any task is waiting for a message at the queue, OSQPostOpt() allows you to
either post the message to the highest priority task waiting at the queue (opt set to OS_POST_OPT_NONE)
or to all tasks waiting at the queue (opt is set to OS_POST_OPT_BROADCAST).  In either case, scheduling
occurs, and, if any of the tasks that receive the message have a higher priority than the task that is post-
ing the message, then the higher priority task is resumed, and the sending task is suspended.  In other
words, a context switch occurs.

OSQPostOpt() emulates both OSQPost() and OSQPostFront() and also allows you to post a mes-
sage to multiple tasks.  In other words, it allows the message posted to be broadcast to all tasks waiting
on the queue.  OSQPostOpt() can actually replace OSQPost() and OSQPostFront() because you spec-
ify the mode of operation via an option argument, opt. Doing this allows you to reduce the amount of
code space needed by µC/OS-II.

Arguments
pevent is a pointer to the queue.  This pointer is returned to your application when the queue is

created [see OSQCreate()].

msg is the actual message sent to the task(s). msg is a pointer-sized variable, and what msg
points to is application specific.  You must never post a NULL pointer.

opt determines the type of POST performed:

OS_POST_OPT_NONE POST to a single waiting task [identical to OSQPost()].

OS_POST_OPT_BROADCAST POST to all tasks waiting on the queue.

OS_POST_OPT_FRONT POST as LIFO [simulates OSQPostFront()].

Below is a list of all the possible combination of these flags:

OS_POST_OPT_NONE is identical to OSQPost()

OS_POST_OPT_FRONT is identical to OSQPostFront()

OS_POST_OPT_BROADCAST is identical to OSQPost() but broadcasts msg to all 
waiting tasks

OS_POST_OPT_FRONT + OS_POST_OPT_BROADCAST

is identical to OSQPostFront() except that broadcasts 
msg to all waiting tasks.

Chapter File Called from Code enabled by
11 OS_Q.C Task or ISR OS_Q_EN && OS_Q_POST_OPT_EN
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Returned Value

err is a pointer to a variable that is used to hold an error code.  The error code can be one of
the following: 

OS_NO_ERR if the call is successful and the message has been sent.

OS_Q_FULL if the queue can no longer accept messages because it 
is full.

OS_ERR_EVENT_TYPE if pevent is not pointing to a mailbox.

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

OS_ERR_POST_NULL_PTR if you are attempting to post a NULL pointer.

Notes/Warnings
1. Queues must be created before they are used.

2. You must never post a NULL pointer to a queue.

3. If you need to use this function and want to reduce code space, you can disable code generation of 
OSQPost() (set OS_Q_POST_EN to 0 in OS_CFG.H) and OSQPostFront() (set OS_Q_POST_FRONT_EN 
to 0 in OS_CFG.H) because OSQPostOpt() can emulate these two functions.

4. The execution time of OSQPostOpt() depends on the number of tasks waiting on the queue if you 
set opt to OS_POST_OPT_BROADCAST.

Example

OS_EVENT *CommQ;

INT8U     CommRxBuf[100];

void CommRxTask (void *pdata)

{

    INT8U  err;

    pdata = pdata;

    for (;;) {

        .

        .

        err = OSQPostOpt(CommQ, (void *)&CommRxBuf[0], OS_POST_OPT_BROADCAST);

        .

        .

    }

}



466 Chapter 16: µC/OS-II Reference Manual
OSQQuery()
INT8U OSQQuery(OS_EVENT *pevent, OS_Q_DATA *pdata);

OSQQuery() obtains information about a message queue. Your application must allocate an OS_Q_DATA
data structure used to receive data from the event control block of the message queue. OSQQuery()
allows you to determine whether any tasks are waiting for messages at the queue, how many tasks are
waiting (by counting the number of 1s in the .OSEventTbl[] field), how many messages are in the
queue, and what the message queue size is. OSQQuery() also obtains the next message that is returned
if the queue is not empty. Note that the size of .OSEventTbl[] is established by the #define constant
OS_EVENT_TBL_SIZE (see uCOS_II.H).

Arguments
pevent is a pointer to the message queue. This pointer is returned to your application when the

queue is created [see OSQCreate()].

pdata is a pointer to a data structure of type OS_Q_DATA, which contains the following fields

Returned Value
OSQQuery() returns one of these error codes:

OS_NO_ERR if the call is successful.

OS_ERR_EVENT_TYPE if you don’t pass a pointer to a message queue.

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

Notes/Warnings
1. Message queues must be created before they are used.

Chapter File Called from Code enabled by
11 OS_Q.C Task or ISR OS_Q_EN && OS_QUERY_EN

void  *OSMsg;                  /* Next message if one available               */

INT16U OSNMsgs;                /* Number of messages in the queue             */

INT16U OSQSize;                /* Size of the message queue                   */

INT8U  OSEventTbl[OS_EVENT_TBL_SIZE];      /* Message queue wait list         */

INT8U  OSEventGrp;
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Example

OS_EVENT *CommQ;

void Task (void *pdata)

{

      OS_Q_DATA qdata;

      INT8U     err;

      pdata = pdata;

      for (;;) {

         .

         .

         err = OSQQuery(CommQ, &qdata);

         if (err == OS_NO_ERR) {

           .   /* 'qdata' can be examined! */

         }

         .

         .

      }

}
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OSSchedLock()
void OSSchedLock(void);

OSSchedLock() prevents task rescheduling until its counterpart, OSSchedUnlock(), is called. The task
that calls OSSchedLock() keeps control of the CPU even though other higher priority tasks are ready to
run. However, interrupts are still recognized and serviced (assuming interrupts are enabled).
OSSchedLock() and OSSchedUnlock() must be used in pairs. µC/OS-II allows OSSchedLock() to be
nested up to 255 levels deep. Scheduling is enabled when an equal number of OSSchedUnlock() calls
have been made.

Arguments
none

Returned Value
none

Notes/Warnings
1. After calling OSSchedLock(), your application must not make system calls that suspend execution 

of the current task; that is, your application cannot call OSTimeDly(), OSTimeDlyHMSM(), 
OSFlagPend(), OSSemPend(), OSMutexPend(), OSMboxPend(), or OSQPend(). Because the 
scheduler is locked out, no other task is allowed to run, and your system will lock up.

Chapter File Called from Code enabled by
3 OS_CORE.C Task or ISR OS_SCHED_LOCK_EN

Example

void TaskX (void *pdata)

{

      pdata = pdata;

      for (;;) {

         .

         OSSchedLock();         /* Prevent other tasks to run         */

         .

         .                      /* Code protected from context switch */

         .

         OSSchedUnlock();       /* Enable other tasks to run          */

         .

      }

}
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OSSchedUnlock()
void OSSchedUnlock(void);

OSSchedUnlock() re-enables task scheduling whenever it is paired with OSSchedLock().

Arguments
none

Returned Value
none

Notes/Warnings
1. After calling OSSchedLock(), your application must not make system calls that suspend execution 

of the current task; that is, your application cannot call OSTimeDly(), OSTimeDlyHMSM(), 
OSFlagPend(), OSSemPend(), OSMutexPend(), OSMboxPend(), or OSQPend(). Because the sched-
uler is locked out, no other task is allowed to run, and your system will lock up.

Chapter File Called from Code enabled by
3 OS_CORE.C Task or ISR OS_SCHED_LOCK_EN

Example

void TaskX (void *pdata)

{

      pdata = pdata;

      for (;;) {

         .

         OSSchedLock();     /* Prevent other tasks to run         */

         .

         .                  /* Code protected from context switch */

         .

         OSSchedUnlock();   /* Enable other tasks to run          */

         .

      }

}
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OSSemAccept()
INT16U OSSemAccept(OS_EVENT *pevent);

OSSemAccept() checks to see if a resource is available or an event has occurred. Unlike OSSemPend(),
OSSemAccept() does not suspend the calling task if the resource is not available.  In other words,
OSSemAccept() is non-blocking.  Use OSSemAccept() from an ISR to obtain the semaphore.

Arguments
pevent is a pointer to the semaphore that guards the resource. This pointer is returned to your

application when the semaphore is created [see OSSemCreate()].

Returned Value
When OSSemAccept() is called and the semaphore value is greater than 0, the semaphore value is decre-
mented, and the value of the semaphore before the decrement is returned to your application. If the
semaphore value is 0 when OSSemAccept() is called, the resource is not available, and 0 is returned to
your application.

Notes/Warnings
1. Semaphores must be created before they are used.

Chapter File Called from Code enabled by
7 OS_SEM.C Task or ISR OS_SEM_EN && OS_SEM_ACCEPT_EN

Example

OS_EVENT *DispSem;

void Task (void *pdata)

{

      INT16U value;

      pdata = pdata;

      for (;;) {

         value = OSSemAccept(DispSem);         /* Check resource availability */

         if (value > 0) {

            .                                  /* Resource available, process */

            .

         } 

         .

         .

      }

}
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OSSemCreate()
OS_EVENT *OSSemCreate(INT16U value);

OSSemCreate() creates and initializes a semaphore. A semaphore

• allows a task to synchronize with either an ISR or a task (you initialize the semaphore to 0),

• gains exclusive access to a resource (you initialize the semaphore to a value greater than 0), and

• signals the occurrence of an event (you initialize the semaphore to 0).

Arguments
value is the initial value of the semaphore and can be between 0 and 65,535.  A value of 0

indicates that a resource is not available or an event has not occurred.

Returned Value
OSSemCreate() returns a pointer to the event control block allocated to the semaphore. If no event con-
trol block is available, OSSemCreate() returns a NULL pointer.

Notes/Warnings
1. Semaphores must be created before they are used.

Chapter File Called from Code enabled by
7 OS_SEM.C Task or startup code OS_SEM_EN

Example

OS_EVENT *DispSem;

void main (void)

{

      .

      .

      OSInit();                     /* Initialize µC/OS-II             */

      .   

      .

      DispSem = OSSemCreate(1);     /* Create Display Semaphore        */

      .

      .

      OSStart();                    /* Start Multitasking              */

}
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OSSemDel()
OS_EVENT *OSSemDel(OS_EVENT *pevent, INT8U opt, INT8U *err);

OSSemDel() is used to delete a semaphore. This function is dangerous to use because multiple tasks
could attempt to access a deleted semaphore. You should always use this function with great care. Gen-
erally speaking, before you delete a semaphore, you must first delete all the tasks that can access the
semaphore.

Arguments
pevent is a pointer to the semaphore. This pointer is returned to your application when the

semaphore is created [see OSSemCreate()].

opt specifies whether you want to delete the semaphore only if there are no pending tasks
(OS_DEL_NO_PEND) or whether you always want to delete the semaphore regardless of
whether tasks are pending or not (OS_DEL_ALWAYS). In this case, all pending task are
readied. 

err is a pointer to a variable that is used to hold an error code.  The error code can be one of
the following: 

OS_NO_ERR if the call is successful and the semaphore has been 
deleted.

OS_ERR_DEL_ISR if you attempt to delete the semaphore from an ISR.

OS_ERR_INVALID_OPT if you don’t specify one of the two options mentioned 
in the opt argument.

OS_ERR_TASK_WAITING if one or more tasks are waiting on the semaphore.

OS_ERR_EVENT_TYPE if pevent is not pointing to a semaphore.

OS_ERR_PEVENT_NULL if no more OS_EVENT structures are available.

Returned Value
A NULL pointer if the semaphore is deleted or pevent if the semaphore is not deleted. In the latter case, 
you need to examine the error code to determine the reason.

Notes/Warnings
1. You should use this call with care because other tasks might expect the presence of the semaphore.

2. Interrupts are disabled when pended tasks are readied, which means that interrupt latency depends 
on the number of tasks that are waiting on the semaphore.

Chapter File Called from Code enabled by
7 OS_SEM.C Task OS_SEM_EN and OS_SEM_DEL_EN
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Example

OS_EVENT *DispSem;

void Task (void *pdata)

{

    INT8U  err;

    pdata = pdata;

    while (1) {

        .

        .

        DispSem = OSSemDel(DispSem, OS_DEL_ALWAYS, &err);

        if (DispSem == (OS_EVENT *)0) {

            /* Semaphore has been deleted */

        }

        .

        .

    }

}
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OSSemPend()
void OSSemPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);

OSSemPend() is used when a task wants exclusive access to a resource, needs to synchronize its
activities with an ISR or a task, or is waiting until an event occurs. If a task calls OSSemPend() and the
value of the semaphore is greater than 0, OSSemPend() decrements the semaphore and returns to its
caller. However, if the value of the semaphore is 0, OSSemPend() places the calling task in the waiting
list for the semaphore. The task waits until a task or an ISR signals the semaphore or the specified
timeout expires. If the semaphore is signaled before the timeout expires, µC/OS-II resumes the highest
priority task waiting for the semaphore. A pended task that has been suspended with OSTaskSuspend()
can obtain the semaphore. However, the task remains suspended until it is resumed by calling
OSTaskResume().

Arguments
pevent is a pointer to the semaphore. This pointer is returned to your application when the

semaphore is created [see OSSemCreate()].

timeout allows the task to resume execution if a message is not received from the mailbox
within the specified number of clock ticks. A timeout value of 0 indicates that the task
waits forever for the message. The maximum timeout is 65,535 clock ticks. The timeout
value is not synchronized with the clock tick. The timeout count begins decrementing
on the next clock tick, which could potentially occur immediately.

err is a pointer to a variable used to hold an error code. OSSemPend() sets *err to one of
the following:

OS_NO_ERR if the semaphore is available.

OS_TIMEOUT if the semaphore is not signaled within the specified 
timeout.

OS_ERR_EVENT_TYPE if pevent is not pointing to a semaphore.

OS_ERR_PEND_ISR if you called this function from an ISR and µC/OS-II 
has to suspend it. You should not call OSSemPend() 
from an ISR. µC/OS-II checks for this situation.

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

Returned Value
none

Chapter File Called from Code enabled by
7 OS_SEM.C Task only OS_SEM_EN
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Notes/Warnings
1. Semaphores must be created before they are used.

Example

OS_EVENT *DispSem;

void DispTask (void *pdata)

{

      INT8U  err;

      pdata = pdata;

      for (;;) {

         . 

         .

         OSSemPend(DispSem, 0, &err); 

         .               /* The only way this task continues is if … */

         .               /* … the semaphore is signaled!             */

      }

}
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OSSemPost()
INT8U OSSemPost(OS_EVENT *pevent);

A semaphore is signaled by calling OSSemPost(). If the semaphore value is 0 or more, it is incremented,
and OSSemPost() returns to its caller. If tasks are waiting for the semaphore to be signaled,
OSSemPost() removes the highest priority task pending for the semaphore from the waiting list and
makes this task ready to run. The scheduler is then called to determine if the awakened task is now the
highest priority task ready to run.

Arguments
pevent is a pointer to the semaphore. This pointer is returned to your application when the

semaphore is created [see OSSemCreate()].

Returned Value
OSSemPost() returns one of these error codes:

OS_NO_ERR if the semaphore is signaled successfully.

OS_SEM_OVF if the semaphore count overflows.

OS_ERR_EVENT_TYPE if pevent is not pointing to a semaphore.

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

Notes/Warnings
1. Semaphores must be created before they are used.

Chapter File Called from Code enabled by
7 OS_SEM.C Task or ISR OS_SEM_EN
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Example

OS_EVENT *DispSem;

void TaskX (void *pdata)

{

      INT8U  err;

      pdata = pdata;

      for (;;) {

         . 

         .

         err = OSSemPost(DispSem);

         switch (err) {
             case OS_NO_ERR:

                  /* Semaphore signaled       */
                  break;

             case OS_SEM_OVF:

                  /* Semaphore has overflowed */
                  break;

            .

            .

         }

         .

         .

      }

}
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OSSemQuery()
INT8U OSSemQuery(OS_EVENT *pevent, OS_SEM_DATA *pdata);

OSSemQuery() obtains information about a semaphore. Your application must allocate an OS_SEM_DATA
data structure used to receive data from the event control block of the semaphore. OSSemQuery() allows
you to determine whether any tasks are waiting on the semaphore and how many tasks are waiting (by
counting the number of 1s in the .OSEventTbl[] field) and obtains the semaphore count. Note that the
size of .OSEventTbl[] is established by the #define constant OS_EVENT_TBL_SIZE (see uCOS_II.H).

Arguments
pevent is a pointer to the semaphore. This pointer is returned to your application when the

semaphore is created [see OSSemCreate()].

pdata is a pointer to a data structure of type OS_SEM_DATA, which contains the following fields

Returned Value
OSSemQuery() returns one of these error codes:

OS_NO_ERR if the call is successful.

OS_ERR_EVENT_TYPE if you don’t pass a pointer to a semaphore.

OS_ERR_PEVENT_NULL if pevent is is a NULL pointer.

Notes/Warnings
1. Semaphores must be created before they are used.

Chapter File Called from Code enabled by
7 OS_SEM.C Task or ISR OS_SEM_EN && OS_SEM_QUERY_EN

INT16U OSCnt;                                /* Current semaphore count     */

INT8U  OSEventTbl[OS_EVENT_TBL_SIZE];        /* Semaphore wait list         */

INT8U  OSEventGrp;
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Example
In this example, the contents of the semaphore is checked to determine the highest priority task waiting
at the time the function call was made.

OS_EVENT *DispSem;

void Task (void *pdata)

{

      OS_SEM_DATA sem_data;

      INT8U       err;

      INT8U       highest; /* Highest priority task waiting on sem. */

      INT8U       x;

      INT8U       y;

      pdata = pdata;

      for (;;) {

         .

         .

         err = OSSemQuery(DispSem, &sem_data);

         if (err == OS_NO_ERR) {

            if (sem_data.OSEventGrp != 0x00) {

                y       = OSUnMapTbl[sem_data.OSEventGrp]; 

                x       = OSUnMapTbl[sem_data.OSEventTbl[y]];

                highest = (y << 3) + x;

                .

                .

            }

         }

         .

         .

      }

}
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OSStart()
void OSStart(void);

OSStart() starts multitasking under µC/OS-II.  This function is typically called from your startup code
but after you call OSInit().

Arguments
none

Returned Value
none

Notes/Warnings
1. OSInit() must be called prior to calling OSStart().  OSStart() should only be called once by 

your application code. If you do call OSStart() more than once, it does not do anything on the sec-
ond and subsequent calls.

Chapter File Called from Code enabled by
3 OS_CORE.C Startup code only N/A

Example

void main (void)

{

    .                                  /* User Code            */

    .

    OSInit();                          /* Initialize uC/OS-II  */

    .                                  /* User Code            */

    .

    OSStart();                         /* Start Multitasking   */
    /* Any code here should NEVER be executed! */

}
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OSStatInit()
void OSStatInit(void);

OSStatInit() determines the maximum value that a 32-bit counter can reach when no other task is
executing. This function must be called when only one task is created in your application and when
multitasking has started; that is, this function must be called from the first and, only, task created.

Arguments
none

Returned Value
none

Notes/Warnings
none

Chapter File Called from Code enabled by
3 OS_CORE.C Startup code only OS_TASK_STAT_EN && 

OS_TASK_CREATE_EXT_EN 

Example

void FirstAndOnlyTask (void *pdata)

{

      .

      .

      OSStatInit();            /* Compute CPU capacity with no task running */

      .

      OSTaskCreate(…);         /* Create the other tasks                    */

      OSTaskCreate(…);

      .

      for (;;) {

         .

         .

      }

}
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OSTaskChangePrio()
INT8U OSTaskChangePrio(INT8U oldprio, INT8U newprio);

OSTaskChangePrio() changes the priority of a task.

Arguments
oldprio is the priority number of the task to change.

newprio is the new task’s priority.

Returned Value
OSTaskChangePrio() returns one of the following error codes:

OS_NO_ERR if the task’s priority is changed.

OS_PRIO_INVALID if either the old priority or the new priority is equal to 
or exceeds OS_LOWEST_PRIO.

OS_PRIO_EXIST if newprio already exists.

OS_PRIO_ERR if no task with the specified old priority exists (i.e., the 
task specified by oldprio does not exist).

Notes/Warnings
1. The desired priority must not already have been assigned; otherwise, an error code is returned. 

Also, OSTaskChangePrio() verifies that the task to change exists.

Chapter File Called from Code enabled by
4 OS_TASK.C Task only OS_TASK_CHANGE_PRIO_EN

Example

void TaskX (void *data)

{

      INT8U  err;

      for (;;) {

         .

         .

         err = OSTaskChangePrio(10, 15); 

         .

         .

      }

}



OSTaskCreate()  483

16
OSTaskCreate()
INT8U OSTaskCreate(void (*task)(void *pd),
                   void *pdata,
                   OS_STK *ptos,
                   INT8U prio);

OSTaskCreate() creates a task so it can be managed by µC/OS-II. Tasks can be created either prior to
the start of multitasking or by a running task. A task cannot be created by an ISR. A task must be written
as an infinite loop, as shown below, and must not return.

OSTaskCreate() is used for backward compatibility with µC/OS and when the added features of
OSTaskCreateExt() are not needed.

Depending on how the stack frame is built, your task has interrupts either enabled or disabled. You
need to check with the processor-specific code for details.

Chapter File Called from Code enabled by
4 OS_TASK.C Task or startup code OS_TASK_CREATE_EN

void Task (void *pdata)

{

      .                    /* Do something with 'pdata'                    */

      for (;;) {           /* Task body, always an infinite loop.          */

         .

         .

         /* Must call one of the following services:                       */

         /*    OSMboxPend()                                                */

         /*    OSFlagPend()                                                */

         /*    OSMutexPend()                                               */

         /*    OSQPend()                                                   */

         /*    OSSemPend()                                                 */

         /*    OSTimeDly()                                                 */

         /*    OSTimeDlyHMSM()                                             */

         /*    OSTaskSuspend()     (Suspend self)                          */

         /*    OSTaskDel()         (Delete  self)                          */

         .

         .

      }

}
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Arguments
task is a pointer to the task’s code.

pdata is a pointer to an optional data area used to pass parameters to the task when it is cre-
ated. Where the task is concerned, it thinks it is invoked and passes the argument pdata.
pdata can be used to pass arguments to the task created.  For example, you can create a
generic task that handles an asynchronous serial port.  pdata can be used to pass this
task information about the serial port it has to manage: the port address, the baud rate,
the number of bits, the parity, and more.

ptos is a pointer to the task’s top-of-stack. The stack is used to store local variables, func-
tion parameters, return addresses, and CPU registers during an interrupt. The size of
the stack is determined by the task’s requirements and the anticipated interrupt nest-
ing. Determining the size of the stack involves knowing how many bytes are required
for storage of local variables for the task itself and all nested functions, as well as
requirements for interrupts (accounting for nesting). If the configuration constant
OS_STK_GROWTH is set to 1, the stack is assumed to grow downward (i.e., from high to
low memory). ptos thus needs to point to the highest valid memory location on the
stack. If OS_STK_GROWTH is set to 0, the stack is assumed to grow in the opposite direc-
tion (i.e., from low to high memory).

prio is the task priority. A unique priority number must be assigned to each task, and the
lower the number, the higher the priority (i.e., the task importance).

Returned Value
OSTaskCreate() returns one of the following error codes:

OS_NO_ERR if the function is successful.

OS_PRIO_EXIST if the requested priority already exists.

OS_PRIO_INVALID if prio is higher than OS_LOWEST_PRIO.

OS_NO_MORE_TCB if µC/OS-II doesn’t have any more OS_TCBs to assign.

Notes/Warnings
1. The stack for the task must be declared with the OS_STK type.

2. A task must always invoke one of the services provided by µC/OS-II to wait for time to expire, sus-
pend the task, or wait for an event to occur (wait on a mailbox, queue, or semaphore). This allows 
other tasks to gain control of the CPU.

3. You should not use task priorities 0, 1, 2, 3, OS_LOWEST_PRIO-3, OS_LOWEST_PRIO-2,
OS_LOWEST_PRIO-1, and OS_LOWEST_PRIO because they are reserved for use by µC/OS-II. This 
leaves you with up to 56 application tasks.



OSTaskCreate()  485

16
Example 1
This example shows that the argument that Task1() receives is not used, so the pointer pdata is set to
NULL. Note that I assume the stack grows from high to low memory because I pass the address of the
highest valid memory location of the stack Task1Stk[]. If the stack grows in the opposite direction for
the processor you are using, pass &Task1Stk[0] as the task’s top-of-stack.

Assigning pdata to itself is used to prevent compilers from issuing a warning about the fact that
pdata is not being used.  In other words, if I had not added this line, some compilers would have com-
plained about ‘WARNING - variable pdata not used.’

Example 2
You can create a generic task that can be instantiated more than once. For example, a task that handles a
serial port could be passed the address of a data structure that characterizes the specific port (i.e., port
address and baud rate).  Note that each task has its own stack space and its own (different) priority.  In
this example, I arbitrarily decided that COM1 is the most important port of the two.

OS_STK  Task1Stk[1024];

void main (void)

{

      INT8U err;

      .

      OSInit();                /* Initialize µC/OS-II             */

      .

      OSTaskCreate(Task1, 

                   (void *)0, 

                   &Task1Stk[1023], 

                   25);

      .

      OSStart();               /* Start Multitasking              */

}

void Task1 (void *pdata)

{

      pdata = pdata;            /* Prevent compiler warning      */

      for (;;) {

         .                      /* Task code                     */

         .

      }

}
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OS_STK    *Comm1Stk[1024];

COMM_DATA  Comm1Data;           /* Data structure containing COMM port     */

                                /* Specific data for channel 1             */

OS_STK    *Comm2Stk[1024];

COMM_DATA  Comm2Data;           /* Data structure containing COMM port     */

                                /* Specific data for channel 2             */

void main (void)

{

   INT8U err;

   .

   OSInit();                    /* Initialize µC/OS-II                     */

   .
                                /* Create task to manage COM1              */

   OSTaskCreate(CommTask, 

                (void *)&Comm1Data, 

                &Comm1Stk[1023], 

                25);
                                /* Create task to manage COM2              */

   OSTaskCreate(CommTask, 

                (void *)&Comm2Data, 

                &Comm2Stk[1023], 

                26);

   .

   OSStart();                   /* Start Multitasking                      */

}

void CommTask (void *pdata)      /* Generic communication task              */

{

      for (;;) {

         .                      /* Task code                               */

         .

      }

}
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OSTaskCreateExt()
INT8U OSTaskCreateExt(void (*task)(void *pd),
                      void    *pdata,
                      OS_STK  *ptos,
                      INT8U   prio,
                      INT16U  id,
                      OS_STK  *pbos,
                      INT32U  stk_size,
                      void    *pext,
                      INT16U  opt);

OSTaskCreateExt() creates a task to be managed by µC/OS-II. This function serves the same purpose
as OSTaskCreate(), except that it allows you to specify additional information about your task to
µC/OS-II. Tasks can be created either prior to the start of multitasking or by a running task. A task can-
not be created by an ISR. A task must be written as an infinite loop, as shown below, and must not
return. Depending on how the stack frame is built, your task has interrupts either enabled or disabled.
You need to check with the processor-specific code for details. Note that the first four arguments are
exactly the same as the ones for OSTaskCreate(). This was done to simplify the migration to this new
and more powerful function.  It is highly recommended that you use OSTaskCreateExt() instead of the
older OSTaskCreate() function because it’s much more flexible.

Chapter File Called from Code enabled by
4 OS_TASK.C Task or startup code N/A

void Task (void *pdata)

{

      .                    /* Do something with 'pdata'                    */

      for (;;) {           /* Task body, always an infinite loop.          */

         .

         .

         /* Must call one of the following services:                       */

         /*    OSMboxPend()                                                */

         /*    OSFlagPend()                                                */

         /*    OSMutexPend()                                               */

         /*    OSQPend()                                                   */

         /*    OSSemPend()                                                 */

         /*    OSTimeDly()                                                 */

         /*    OSTimeDlyHMSM()                                             */

         /*    OSTaskSuspend()     (Suspend self)                          */

         /*    OSTaskDel()         (Delete  self)                          */

         .

         .

      }

}
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Arguments
task is a pointer to the task’s code.

pdata is a pointer to an optional data area, which is used to pass parameters to the task when it
is created. Where the task is concerned, it thinks it is invoked and passes the argument
pdata. pdata can be used to pass arguments to the task created.  For example, you can
create a generic task that handles an asynchronous serial port.  pdata can be used to
pass this task information about the serial port it has to manage: the port address, the
baud rate, the number of bits, the parity, and more.

ptos is a pointer to the task’s top-of-stack. The stack is used to store local variables, function
parameters, return addresses, and CPU registers during an interrupt. 

The size of this stack is determined by the task’s requirements and the anticipated
interrupt nesting. Determining the size of the stack involves knowing how many bytes
are required for storage of local variables for the task itself and all nested functions, as
well as requirements for interrupts (accounting for nesting). 

If the configuration constant OS_STK_GROWTH is set to 1, the stack is assumed to
grow downward (i.e., from high to low memory). ptos thus needs to point to the high-
est valid memory location on the stack. If OS_STK_GROWTH is set to 0, the stack is
assumed to grow in the opposite direction (i.e., from low to high memory).

prio is the task priority. A unique priority number must be assigned to each task: the lower
the number, the higher the priority (i.e., the importance) of the task.

id is the task’s ID number. At this time, the ID is not currently used in any other function
and has simply been added in OSTaskCreateExt() for future expansion. You should set
id to the same value as the task’s priority.

pbos is a pointer to the task’s bottom-of-stack. If the configuration constant OS_STK_GROWTH
is set to 1, the stack is assumed to grow downward (i.e., from high to low memory);
thus, pbos must point to the lowest valid stack location. If OS_STK_GROWTH is set to 0,
the stack is assumed to grow in the opposite direction (i.e., from low to high memory);
thus, pbos must point to the highest valid stack location. pbos is used by the
stack-checking function OSTaskStkChk().

stk_size specifies the size of the task’s stack in number of elements. If OS_STK is set to INT8U,
then stk_size corresponds to the number of bytes available on the stack. If OS_STK is
set to INT16U, then stk_size contains the number of 16-bit entries available on the
stack. Finally, if OS_STK is set to INT32U, then stk_size contains the number of 32-bit
entries available on the stack.

pext is a pointer to a user-supplied memory location (typically a data structure) used as a
TCB extension. For example, this user memory can hold the contents of floating-point
registers during a context switch, the time each task takes to execute, the number of
times the task is switched in, and so on.
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opt contains task-specific options. The lower 8 bits are reserved by µC/OS-II, but you can
use the upper 8 bits for application-specific options. Each option consists of one or
more bits. The option is selected when the bit(s) is set. The current version of µC/OS-II
supports the following options:

OS_TASK_OPT_STK_CHK specifies whether stack checking is allowed for the 
task.

OS_TASK_OPT_STK_CLR specifies whether the stack needs to be cleared.

OS_TASK_OPT_SAVE_FP specifies whether floating-point registers are saved. 
This option is only valid if your processor has 
floating-point hardware and the processor-specific 
code saves the floating-point registers.

Refer to uCOS_II.H for other options.

Returned Value
OSTaskCreateExt() returns one of the following error codes:

OS_NO_ERR if the function is successful.

OS_PRIO_EXIST if the requested priority already exists.

OS_PRIO_INVALID if prio is higher than OS_LOWEST_PRIO.

OS_NO_MORE_TCB if µC/OS-II doesn’t have any more OS_TCBs to assign.

Notes/Warnings
1. The stack must be declared with the OS_STK type.

2. A task must always invoke one of the services provided by µC/OS-II to wait for time to expire, sus-
pend the task, or wait an event to occur (wait on a mailbox, queue, or semaphore). This allows other 
tasks to gain control of the CPU.

3. You should not use task priorities 0, 1, 2, 3, OS_LOWEST_PRIO-3, OS_LOWEST_PRIO-2,
OS_LOWEST_PRIO-1, and OS_LOWEST_PRIO because they are reserved for use by µC/OS-II. This 
leaves you with up to 56 application tasks.
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Example 1
E1(1) The task control block is extended using a user-defined data structure called OS_TASK_USER_DATA,

which in this case contains the name of the task as well as other fields. 

E1(2) The task name is initialized with the standard library function strcpy(). 

E1(4) Note that stack checking has been enabled for this task, so you are allowed to call
OSTaskStkChk(). 

E1(3) Also, assume here that the stack grows downward on the processor used (i.e., OS_STK_GROWTH
is set to 1; TOS stands for top-of-stack and BOS stands for bottom-of-stack).

typedef struct {                   /*  User defined data structure */        (1)

    char    OSTaskName[20];

    INT16U  OSTaskCtr;

    INT16U  OSTaskExecTime;

    INT32U  OSTaskTotExecTime;

} OS_TASK_USER_DATA;

OS_STK           TaskStk[1024];

TASK_USER_DATA   TaskUserData;

void main (void)

{

      INT8U err;

      .

      OSInit();                              /* Initialize µC/OS-II*/

      .

      strcpy(TaskUserData.TaskName, "MyTaskName");  /* Name of task */       (2)

      err = OSTaskCreateExt(Task, 

               (void *)0, 

               &TaskStk[1023],               /*  Stack grows down (TOS) */   (3)

               10,

               &TaskStk[0],                  /*  Stack grows down (BOS) */   (3)

               1024, 

               (void *)&TaskUserData,        /* TCB Extension*/

               OS_TASK_OPT_STK_CHK);         /*  Stack checking enabled */   (4)

      .

      OSStart();                             /* Start Multitasking*/

}
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void Task(void *pdata)

{

      pdata = pdata;                         /* Avoid compiler warning*/

      for (;;) {

         .                                   /* Task code*/

         .

      }

}
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Example 2
E2(1) Now create a task, but this time on a processor for which the stack grows upward. The Intel

MCS-51 is an example of such a processor. In this case, OS_STK_GROWTH is set to 0.

E2(2) Note that stack checking has been enabled for this task so you are allowed to call
OSTaskStkChk() (TOS stands for top-of-stack and BOS stands for bottom-of-stack).

OS_STK *TaskStk[1024];

void main (void)

{

      INT8U err;

      .

      OSInit();                              /* Initialize µC/OS-II     */

      .

      err = OSTaskCreateExt(Task,

               (void *)0, 

               &TaskStk[0],                  /*  Stack grows up (TOS)   */   (1)

               10,

               10,

               &TaskStk[1023],               /*  Stack grows up (BOS)   */   (1)

               1024, 

               (void *)0,

               OS_TASK_OPT_STK_CHK);         /*  Stack checking enabled */   (2)

      .

      OSStart();                             /* Start Multitasking      */

}

void Task (void *pdata)

{

      pdata = pdata;                         /* Avoid compiler warning  */

      for (;;) {

         .                                   /* Task code               */

         .

      }

}



OSTaskDel()  493

16
OSTaskDel()
INT8U OSTaskDel(INT8U prio);

OSTaskDel() deletes a task by specifying the priority number of the task to delete. The calling task can
be deleted by specifying its own priority number or OS_PRIO_SELF (if the task doesn’t know its own pri-
ority number). The deleted task is returned to the dormant state. The deleted task can be re-created by
calling either OSTaskCreate() or OSTaskCreateExt() to make the task active again.

Arguments
prio is the priority number of the task to delete. You can delete the calling task by passing

OS_PRIO_SELF, in which case the next highest priority task is executed.

Returned Value
OSTaskDel() returns one of the following error codes:

OS_NO_ERR if the task doesn’t delete itself.

OS_TASK_DEL_IDLE if you try to delete the idle task, which is of course is 
not allowed.

OS_TASK_DEL_ERR if the task to delete does not exist.

OS_PRIO_INVALID if you specify a task priority higher than
OS_LOWEST_PRIO.

OS_TASK_DEL_ISR if you try to delete a task from an ISR.

Notes/Warnings
1. OSTaskDel() verifies that you are not attempting to delete the µC/OS-II idle task.

2. You must be careful when you delete a task that owns resources. Instead, consider using 
OSTaskDelReq() as a safer approach.

Chapter File Called from Code enabled by
4 OS_TASK.C Task only OS_TASK_DEL_EN
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Example

void TaskX (void *pdata)

{

      INT8U err;

      for (;;) {

         . 

         .

         err = OSTaskDel(10);      /* Delete task with priority 10  */

         if (err == OS_NO_ERR) {

            .                      /* Task was deleted              */

            .

         }

         .

         .

      }

}
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OSTaskDelReq()
INT8U OSTaskDelReq(INT8U prio);

OSTaskDelReq() requests that a task delete itself. Basically, use OSTaskDelReq() when you need to
delete a task that can potentially own resources (e.g., the task might own a semaphore). In this case, you
don’t want to delete the task until the resource is released. The requesting task calls OSTaskDelReq() to
indicate that the task needs to be deleted. Deletion of the task is, however, deferred to the task being
deleted. In other words, the task is actually deleted when it regains control of the CPU. For example,
suppose Task 10 needs to be deleted. The task wanting to delete this task (example Task 5) calls
OSTaskDelReq(10). When Task 10 executes, it calls OSTaskDelReq(OS_PRIO_SELF) and monitors the
return value. If the return value is OS_TASK_DEL_REQ, then Task 10 is asked to delete itself. At this point,
Task 10 calls OSTaskDel(OS_PRIO_SELF). Task 5 knows whether Task 10 has been deleted by calling
OSTaskDelReq(10) and checking the return code. If the return code is OS_TASK_NOT_EXIST, then Task 5
knows that Task 10 has been deleted. Task 5 might have to check periodically until OS_TASK_NOT_EXIST
is returned.

Arguments
prio is the task’s priority number of the task to delete. If you specify OS_PRIO_SELF, you are

asking whether another task wants the current task to be deleted.

Returned Value
OSTaskDelReq() returns one of the following error codes:

OS_NO_ERR if the task deletion has been registered.

OS_TASK_NOT_EXIST if the task does not exist. The requesting task can 
monitor this return code to see if the task is actually 
deleted.

OS_TASK_DEL_IDLE if you ask to delete the idle task (which is obviously 
not allowed).

OS_PRIO_INVALID if you specify a task priority higher than
OS_LOWEST_PRIO or do not specify OS_PRIO_SELF.

OS_TASK_DEL_REQ if a task (possibly another task) requests that the 
running task be deleted.

Notes/Warnings
1. OSTaskDelReq() verifies that you are not attempting to delete the µC/OS-II idle task.

Chapter File Called from Code enabled by
4 OS_TASK.C Task only OS_TASK_DEL_EN
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Example

void TaskThatDeletes (void *pdata)   /* My priority is 5                  */

{

      INT8U err;

      for (;;) {

         . 

         .

         err = OSTaskDelReq(10);     /* Request task #10 to delete itself */

         if (err == OS_NO_ERR) {

            while (err != OS_TASK_NOT_EXIST) {

               err = OSTaskDelReq(10);

               OSTimeDly(1);         /* Wait for task to be deleted       */

            }

            .                        /* Task #10 has been deleted         */

         }

         .

         .

      }

}

void TaskToBeDeleted (void *pdata)   /* My priority is 10                 */

{

   .

   .

   pdata = pdata;

   for (;;) {

      OSTimeDly(1);

      if (OSTaskDelReq(OS_PRIO_SELF) == OS_TASK_DEL_REQ) {

         /* Release any owned resources;                                  */

         /* De-allocate any dynamic memory;                               */

         OSTaskDel(OS_PRIO_SELF);

      }

   }

}
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OSTaskQuery()
INT8U OSTaskQuery(INT8U prio, OS_TCB *pdata);

OSTaskQuery() obtains information about a task. Your application must allocate an OS_TCB data struc-
ture to receive a snapshot of the desired task’s control block. Your copy contains every field in the OS_TCB
structure. You should be careful when accessing the contents of the OS_TCB structure, especially
OSTCBNext and OSTCBPrev, because they point to the next and previous OS_TCBs in the chain of created
tasks, respectively.  You could use this function to provide a debugger kernel awareness.

Arguments
prio is the priority of the task from which you wish to obtain data. You can obtain informa-

tion about the calling task by specifying OS_PRIO_SELF.

pdata is a pointer to a structure of type OS_TCB, which contains a copy of the task’s control
block.

Returned Value
OSTaskQuery() returns one of these error codes:

OS_NO_ERR if the call is successful.

OS_PRIO_ERR if you try to obtain information from an invalid task.

OS_PRIO_INVALID if you specify a priority higher than OS_LOWEST_PRIO.

Notes/Warnings
1. The fields in the task control block depend on the following configuration options (see OS_CFG.H):

• OS_TASK_CREATE_EN
• OS_Q_EN
• OS_FLAG_EN
• OS_MBOX_EN
• OS_SEM_EN

• OS_TASK_DEL_EN

Chapter File Called from Code enabled by
4 OS_TASK.C Task or ISR N/A
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Example

void Task (void *pdata)

{

      OS_TCB  task_data;

      INT8U   err;

      void   *pext;

      INT8U   status;

      pdata = pdata;

      for (;;) {

         .

         .

         err = OSTaskQuery(OS_PRIO_SELF, &task_data);

         if (err == OS_NO_ERR) {

            pext   = task_data.OSTCBExtPtr; /* Get TCB extension pointer   */

            status = task_data.OSTCBStat;   /* Get task status             */

            .

            .

         }

         .

         .

      }

   }
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OSTaskResume()
INT8U OSTaskResume(INT8U prio);

OSTaskResume() resumes a task suspended through the OSTaskSuspend() function. In fact,
OSTaskResume() is the only function that can unsuspend a suspended task.

Arguments
prio specifies the priority of the task to resume.

Returned Value
OSTaskResume() returns one of the these error codes:

OS_NO_ERR if the call is successful.

OS_TASK_RESUME_PRIO if the task you are attempting to resume does not exist.

OS_TASK_NOT_SUSPENDED if the task to resume has not been suspended.

OS_PRIO_INVALID if prio is higher or equal to OS_LOWEST_PRIO.

Notes/Warnings
none

Chapter File Called from Code enabled by
4 OS_TASK.C Task only OS_TASK_SUSPEND_EN

Example

void TaskX (void *pdata)

{

      INT8U err;

      for (;;) {

         . 

         .

         err = OSTaskResume(10);        /* Resume task with priority 10    */

         if (err == OS_NO_ERR) {

            .                           /* Task was resumed                */

            .

         }

         .

         .

      }

}
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OSTaskStkChk()
INT8U OSTaskStkChk(INT8U prio, OS_STK_DATA *pdata);

OSTaskStkChk() determines a task’s stack statistics. Specifically, it computes the amount of free stack
space, as well as the amount of stack space used by the specified task. This function requires that the
task be created with OSTaskCreateExt() and that you specify OS_TASK_OPT_STK_CHK in the opt argu-
ment.

Stack sizing is done by walking from the bottom of the stack and counting the number of 0 entries
on the stack until a nonzero value is found. Of course, this assumes that the stack is cleared when the
task is created. For that purpose, you need to set OS_TASK_OPT_STK_CLR to 1 as an option when you cre-
ate the task. You could set OS_TASK_OPT_STK_CLR to 0 if your startup code clears all RAM and you
never delete your tasks. This reduces the execution time of OSTaskCreateExt().

Arguments
prio is the priority of the task about which you want to obtain stack information. You can

check the stack of the calling task by passing OS_PRIO_SELF.

pdata is a pointer to a variable of type OS_STK_DATA, which contains the following fields:

Returned Value
OSTaskStkChk() returns one of the these error codes:

OS_NO_ERR if you specify valid arguments and the call is 
successful.

OS_PRIO_INVALID if you specify a task priority higher than
OS_LOWEST_PRIO or you don’t specify OS_PRIO_SELF.

OS_TASK_NOT_EXIST if the specified task does not exist.

OS_TASK_OPT_ERR if you do not specify OS_TASK_OPT_STK_CHK when the 
task was created by OSTaskCreateExt() or if you 
create the task by using OSTaskCreate().

Chapter File Called from Code enabled by
4 OS_TASK.C Task code OS_TASK_CREATE_EXT

   INT32U OSFree;        /* Number of bytes free on the stack             */

   INT32U OSUsed;        /* Number of bytes used on the stack             */
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Notes/Warnings
1. Execution time of this task depends on the size of the task’s stack and is thus nondeterministic.

2. Your application can determine the total task stack space (in number of bytes) by adding the two 
fields .OSFree and .OSUsed of the OS_STK_DATA data structure.

3. Technically, this function can be called by an ISR, but because of the possibly long execution time, 
it is not advisable.

Example

void Task (void *pdata)

{

      OS_STK_DATA stk_data;

      INT32U      stk_size;

      for (;;) {

         .

         .

         err = OSTaskStkChk(10, &stk_data);

         if (err == OS_NO_ERR) {

            stk_size = stk_data.OSFree + stk_data.OSUsed;

         }

         .

         .

      }

}
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OSTaskSuspend()
INT8U OSTaskSuspend(INT8U prio);

OSTaskSuspend() suspends (or blocks) execution of a task unconditionally. The calling task can be sus-
pended by specifying its own priority number or OS_PRIO_SELF if the task doesn’t know its own priority
number. In this case, another task needs to resume the suspended task. If the current task is suspended,
rescheduling occurs, and µC/OS-II runs the next highest priority task ready to run. The only way to
resume a suspended task is to call OSTaskResume().

Task suspension is additive, which means that if the task being suspended is delayed until n ticks
expire, the task is resumed only when both the time expires and the suspension is removed. Also, if the
suspended task is waiting for a semaphore and the semaphore is signaled, the task is removed from the
semaphore-wait list (if it is the highest priority task waiting for the semaphore), but execution is not
resumed until the suspension is removed.

Arguments
prio specifies the priority of the task to suspend. You can suspend the calling task by passing

OS_PRIO_SELF, in which case, the next highest priority task is executed.

Returned Value
OSTaskSuspend() returns one of the these error codes:

OS_NO_ERR if the call is successful.

OS_TASK_SUSPEND_IDLE if you attempt to suspend the µC/OS-II idle task, which 
is not allowed.

OS_PRIO_INVALID if you specify a priority higher than the maximum 
allowed (i.e., you specify a priority of
OS_LOWEST_PRIO or more) or you don’t specify
OS_PRIO_SELF.

OS_TASK_SUSPEND_PRIO if the task you are attempting to suspend does not exist.

Notes/Warnings
1. OSTaskSuspend() and OSTaskResume() must be used in pairs.

2. A suspended task can only be resumed by OSTaskResume().

Chapter File Called from Code enabled by
4 OS_TASK.C Task only OS_TASK_SUSPEND_EN
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Example

void TaskX (void *pdata)

{

      INT8U err;

      for (;;) {

         . 

         .

         err = OSTaskSuspend(OS_PRIO_SELF);      /* Suspend current task     */

         .                    /* Execution continues when ANOTHER task ..    */

         .                    /* .. explicitly resumes this task.            */

         .

      }

}
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OSTimeDly()
void OSTimeDly(INT16U ticks);

OSTimeDly() allows a task to delay itself for an integral number of clock ticks. Rescheduling always
occurs when the number of clock ticks is greater than zero. Valid delays range from one to 65,535 ticks.
A delay of 0 means that the task is not delayed, and OSTimeDly() returns immediately to the caller. The
actual delay time depends on the tick rate (see OS_TICKS_PER_SEC in the configuration file OS_CFG.H).

Arguments
ticks is the number of clock ticks to delay the current task.

Returned Value
none

Notes/Warnings
1. Note that calling this function with a value of 0 results in no delay, and the function returns imme-

diately to the caller.

2. To ensure that a task delays for the specified number of ticks, you should consider using a delay 
value that is one tick higher. For example, to delay a task for at least 10 ticks, you should specify a 
value of 11.

Chapter File Called from Code enabled by
5 OS_TIME.C Task only N/A

Example

void TaskX (void *pdata)

{

      for (;;) {

         . 

         .

         OSTimeDly(10);                /* Delay task for 10 clock ticks */

         .

         .

      }

}
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OSTimeDlyHMSM()
void OSTimeDlyHMSM (INT8U hours, INT8U minutes, INT8U seconds, INT8U milli);

OSTimeDlyHMSM() allows a task to delay itself for a user-specified amount of time specified in hours,
minutes, seconds, and milliseconds. This format is more convenient and natural than ticks. Reschedul-
ing always occurs when at least one of the parameters is nonzero.

Arguments
hours is the number of hours the task is delayed. The valid range of values is 0 to 255.

minutes is the number of minutes the task is delayed. The valid range of values is 0 to 59.

seconds is the number of seconds the task is delayed. The valid range of values is 0 to 59.

milli is the number of milliseconds the task is delayed. The valid range of values is 0 to 999.
Note that the resolution of this argument is in multiples of the tick rate. For instance, if
the tick rate is set to 100Hz, a delay of 4ms results in no delay. The delay is rounded to
the nearest tick. Thus, a delay of 15ms actually results in a delay of 20ms.

Returned Value
OSTimeDlyHMSM() returns one of the these error codes:

OS_NO_ERR if you specify valid arguments and the call is 
successful.

OS_TIME_INVALID_MINUTES if the minutes argument is greater than 59.

OS_TIME_INVALID_SECONDS if the seconds argument is greater than 59.

OS_TIME_INVALID_MILLI if the milliseconds argument is greater than 999.

OS_TIME_ZERO_DLY if all four arguments are 0.

Notes/Warnings
1. Note that OSTimeDlyHMSM(0,0,0,0) (i.e., hours, minutes, seconds, milliseconds) results in no 

delay, and the function returns to the caller. Also, if the total delay time is longer than 65,535 clock 
ticks, you cannot abort the delay and resume the task by calling OSTimeDlyResume().

Chapter File Called from Code enabled by
5 OS_TIME.C Task only N/A
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Example

void TaskX (void *pdata)

{

      for (;;) {

         . 

         .

         OSTimeDlyHMSM(0, 0, 1, 0);  /* Delay task for 1 second */

         .

         .

      }

}
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OSTimeDlyResume()
INT8U OSTimeDlyResume(INT8U prio);

OSTimeDlyResume() resumes a task that has been delayed through a call to either OSTimeDly() or
OSTimeDlyHMSM().

Arguments
prio specifies the priority of the task to resume.

Returned Value
OSTimeDlyResume() returns one of the these error codes:

OS_NO_ERR if the call is successful.

OS_PRIO_INVALID if you specify a task priority greater than
OS_LOWEST_PRIO.

OS_TIME_NOT_DLY if the task is not waiting for time to expire.

OS_TASK_NOT_EXIST if the task has not been created.

Notes/Warnings
1. Note that you must not call this function to resume a task that is waiting for an event with timeout. 

This situation makes the task look like a timeout occurred (unless you desire this effect).

2. You cannot resume a task that has called OSTimeDlyHMSM() with a combined time that exceeds 
65,535 clock ticks. In other words, if the clock tick runs at 100Hz, you cannot resume a delayed 
task that called OSTimeDlyHMSM(0, 10, 55, 350) or higher.

(10 minutes * 60 + (55 + 0.35) seconds) * 100 ticks/second

Chapter File Called from Code enabled by
5 OS_TIME.C Task only N/A

Example
void TaskX (void *pdata)

{

   INT8U err;

   pdata = pdata;

   for (;;) {

      . 

      err = OSTimeDlyResume(10);         /* Resume task with priority 10     */

      if (err == OS_NO_ERR) {

         .                               /* Task was resumed                 */

         .

      }

      .

   }

}
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OSTimeGet()
INT32U OSTimeGet(void);

OSTimeGet() obtains the current value of the system clock. The system clock is a 32-bit counter that
counts the number of clock ticks since power was applied or since the system clock was last set.

Arguments
none

Returned Value
The current system clock value (in number of ticks).

Notes/Warnings
none

Chapter File Called from Code enabled by
5 OS_TIME.C Task or ISR N/A

Example

void TaskX (void *pdata)

{

      INT32U clk;

      for (;;) {

         . 

         .

         clk = OSTimeGet();  /* Get current value of system clock */

         .

         .

      }

}
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OSTimeSet()
void OSTimeSet(INT32U ticks);

OSTimeSet() sets the system clock. The system clock is a 32-bit counter that counts the number of
clock ticks since power was applied or since the system clock was last set.

Arguments
ticks is the desired value for the system clock, in ticks.

Returned Value
none

Notes/Warnings
none

Chapter File Called from Code enabled by
5 OS_TIME.C Task or ISR N/A

Example

void TaskX (void *pdata)

{

      for (;;) {

         . 

         .

         OSTimeSet(0L);    /* Reset the system clock  */

         .

         .

      }

}



510 Chapter 16: µC/OS-II Reference Manual
OSTimeTick()
void OSTimeTick(void);

OSTimeTick() processes a clock tick. µC/OS-II checks all tasks to see if they are either waiting for time
to expire [because they called OSTimeDly() or OSTimeDlyHMSM()] or waiting for events to occur until
they timeout.

Arguments
none

Returned Value
none

Notes/Warnings
1. The execution time of OSTimeTick() is directly proportional to the number of tasks created in an 

application. OSTimeTick() can be called by either an ISR or a task. If called by a task, the task pri-
ority should be very high (i.e., have a low priority number) because this function is responsible for 
updating delays and timeouts.

Chapter File Called from Code enabled by
5 OS_TIME.C Task or ISR N/A
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Example
(Intel 80x86, real mode, large model)

_OSTickISR PROC FAR

               PUSHA                                ; Save processor context

               PUSH ES

               PUSH DS

;

               MOV    AX, SEG(_OSIntNesting)        ; Reload DS

               MOV    DS, AX

               INC    BYTE PTR DS:_OSIntNesting     ; Notify uC/OS-II of ISR

;

               CMP    BYTE PTR DS:_OSIntNesting, 1  ; if (OSIntNesting == 1)

               JNE    SHORT _OSTickISR1

               MOV    AX, SEG(_OSTCBCur)            ;     Reload DS

               MOV    DS, AX

               LES    BX, DWORD PTR DS:_OSTCBCur    ;     OSTCBCur->OSTCBStkPtr = SS:SP

               MOV    ES:[BX+2], SS                 ;

               MOV    ES:[BX+0], SP                 ;

               CALL  FAR  PTR  _OSTimeTick          ; Process clock tick

               .                                    ; User Code to clear interrupt

               .

               CALL FAR PTR _OSIntExit              ; Notify _C/OS-II of end of ISR

               POP  DS                              ; Restore processor registers

               POP  ES

               POPA

;

               IRET                                ; Return to interrupted task

_OSTickISR     ENDP
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OSVersion()
INT16U OSVersion(void);

OSVersion() obtains the current version of µC/OS-II.

Arguments
none

Returned Value
The version is returned as x.yy multiplied by 100. For example, v2.52 is returned as 252.

Notes/Warnings
none

Chapter File Called from Code enabled by
3 OS_CORE.C Task or ISR N/A

Example

void TaskX (void *pdata)

{

      INT16U os_version;

      for (;;) {

         . 

         .

         os_version = OSVersion();  /* Obtain µC/OS-II's version   */

         .

         .

      }

}
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Chapter 17

µC/OS-II Configuration Manual
This chapter provides a description of the configurable elements of µC/OS-II. Because µC/OS-II is pro-
vided in source form, configuration is done through a number of #define constants, which are found in
OS_CFG.H and should exist for each project/product that you develop. In other words, configuration is
done via conditional compilation.

This section describes each of the #define constants in OS_CFG.H.

17.00 Miscellaneous

OS_ARG_CHK_EN
OS_ARG_CHK_EN indicates whether you want most of µC/OS-II functions to perform argument check-
ing. When set to 1, µC/OS-II will ensure that pointers passed to functions are non-NULL, that argu-
ments passed are within allowable range and more. OS_ARG_CHK_EN was added to reduce the amount
of code space and processing time required by µC/OS-II. Set OS_ARG_CHK_EN to 0 if you must
reduce code space to a minimum. In general, you should always enable argument checking and thus
set OS_ARG_CHK_EN to 1.

OS_CPU_HOOKS_EN
OS_CPU_HOOKS_EN indicates whether OS_CPU_C.C declares the hook function (when set to 1) or not
(when set to 0). Recall that µC/OS-II expects the presence of nine functions that can be defined either in
the port (i.e., in OS_CPU_C.C) or by the application code. These functions are

OSInitHookBegin() OSTaskStatHook()

OSInitHookEnd() OSTaskSwHook()

OSTaskCreateHook() OSTCBInitHook()

OSTaskDelHook() OSTimeTickHook()

OSTaskIdleHook()
 513
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OS_LOWEST_PRIO
OS_LOWEST_PRIO specifies the lowest task priority (i.e., highest number) that you intend to use in your
application and is provided to reduce the amount of RAM needed by µC/OS-II. Remember that
µC/OS-II priorities can go from 0 (highest priority) to a maximum of 63 (lowest possible priority). Set-
ting OS_LOWEST_PRIO to a value less than 63 means that your application cannot create tasks with a pri-
ority number higher than OS_LOWEST_PRIO. In fact, µC/OS-II reserves priorities OS_LOWEST_PRIO and
OS_LOWEST_PRIO–1 for itself; OS_LOWEST_PRIO is reserved for the idle task, OS_TaskIdle(), and
OS_LOWEST_PRIO–1 is reserved for the statistic task, OS_TaskStat(). The priorities of your application
tasks can thus take a value between 0 and OS_LOWEST_PRIO–2 (inclusive). The lowest task priority spec-
ified by OS_LOWEST_PRIO is independent of OS_MAX_TASKS. For example, you can set OS_MAX_TASKS to
10 and OS_LOWEST_PRIO to 32 and have up to 10 application tasks, each of which can have a task prior-
ity value between 0 and 30 (inclusive). Note that each task must still have a different priority value. You
must always set OS_LOWEST_PRIO to a value greater than the number of application tasks in your system.
For example, if you set OS_MAX_TASKS to 20 and OS_LOWEST_PRIO to 10, you can not create more than
eight application tasks (0, … , 7). You are simply wasting RAM.

OS_MAX_EVENTS
OS_MAX_EVENTS specifies the maximum number of event control blocks that can be allocated. An event
control block is needed for every message mailbox, message queue, mutual exclusion semaphore, or
semaphore object. For example, if you have 10 mailboxes, five queues, four mutexes, and three sema-
phores, you must set OS_MAX_EVENTS to at least 22. OS_MAX_EVENTS must be greater than 0. See also
OS_MBOX_EN, OS_Q_EN, OS_MUTEX_EN, and OS_SEM_EN.

OS_MAX_FLAGS
OS_MAX_FLAGS specifies the maximum number of event flags that you need in your application.
OS_MAX_FLAGS must be greater than 0. To use event-flag services, you also need to set OS_FLAG_EN to 1.

OS_MAX_MEM_PART
OS_MAX_MEM_PART specifies the maximum number of memory partitions that can be managed by the
memory-partition manager found in OS_MEM.C. To use a memory partition, however, you also need to
set OS_MEM_EN to 1. If you intend to use memory partitions, OS_MAX_MEM_PART must be greater than 0.
In other words, you are allowed to only have one memory partition.

OS_MAX_QS
OS_MAX_QS specifies the maximum number of message queues that your application can create. To use
message-queue services, you also need to set OS_Q_EN to 1. OS_MAX_QS must be greater than 0. In other
words, you are allowed to only have one message queue.

OS_MAX_TASKS
OS_MAX_TASKS specifies the maximum number of application tasks that can exist in your application.
Note that OS_MAX_TASKS cannot be greater than 62 because µC/OS-II currently reserves two tasks for
itself (see OS_N_SYS_TASKS in uCOS_II.H). If you set OS_MAX_TASKS to the exact number of tasks in
your system, you need to make sure that you revise this value when you add additional tasks. Con-
versely, if you make OS_MAX_TASKS much higher than your current task requirements (for future
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expansion), you are wasting valuable RAM. If RAM is not a problem for your product, you should set
OS_MAX_TASKS to 62.

OS_TASK_IDLE_STK_SIZE
OS_TASK_IDLE_STK_SIZE specifies the size of the µC/OS-II idle-task stack. The size is specified not in
bytes but in number of elements. This is because a stack is declared to be of type OS_STK. The size of the
idle-task stack depends on the processor you are using and the deepest anticipated interrupt-nesting
level. Very little is being done in the idle task, but you should allow at least enough space to store all
processor registers on the stack and enough storage to handle all nested interrupts.

OS_TASK_STAT_EN
OS_TASK_STAT_EN specifies whether or not you can enable the µC/OS-II statistic task, as well as its ini-
tialization function. When set to 1, the statistic task OS_TaskStat() and the statistic-task-initialization
function are enabled. OS_TaskStat() computes the CPU usage of your application. When enabled, it
executes every second and computes the 8-bit variable OSCPUUsage, which provides the percentage of
CPU use of your application. OS_TaskStat() calls OSTaskStatHook() every time it executes so that
you can add your own statistics as needed. See OS_CORE.C for details on the statistic task. The priority
of OS_TaskStat() is always set to OS_LOWEST_PRIO-1.

The global variables OSCPUUsage, OSIdleCtrMax, OSIdleCtrRun, OSTaskStatStk[], and
OSStatRdy are not declared when OS_TASK_STAT_EN is set to 0, which reduces the amount of RAM
needed by µC/OS-II if you don’t intend to use the statistic task. OSIdleCtrRun contains a snapshot of
OSIdleCtr just before OSIdleCtr is cleared to zero every second. OSIdleCtrRun is not used by
µC/OS-II for any other purpose. However, you can read and display OSIdleCtrRun if needed.

OS_TASK_STAT_STK_SIZE
OS_TASK_STAT_STK_SIZE specifies the size of the µC/OS-II statistic-task stack. The size is specified not
in bytes but in number of elements. This is because a stack is declared as being of type OS_STK. The size
of the statistic-task stack depends on the processor you are using and the maximum of the following
actions:

• The stack growth associated with performing 32-bit arithmetic (subtraction and division)

• The stack growth associated with calling OSTimeDly()

• The stack growth associated with calling OSTaskStatHook()

• The deepest anticipated interrupt-nesting level

If you want to run stack checking on this task and determine its actual stack requirements, you must
enable code generation for OSTaskCreateExt() by setting OS_TASK_CREATE_EXT_EN to 1. Again, the
priority of OS_TaskStat() is always set to OS_LOWEST_PRIO-1.

OS_SHED_LOCK_EN
This constant enables (when set to 1) or disables (when set to 0) code generation for the two functions
OSShedLock() and OSShedUnlock().
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OS_TICKS_PER_SEC
OS_TICKS_PER_SEC specifies the rate at which you call OSTimeTick(). It is up to your initialization
code to ensure that OSTimeTick() is invoked at this rate. This constant is used by OSStatInit(),
OS_TaskStat(), and OSTimeDlyHMSM().

17.01 Event Flags

OS_FLAG_EN
OS_FLAG_EN enables (when set to 1) or disables (when set to 0) code generation of all the event-flag ser-
vices and data structures, which reduces the amount of code and data space needed when your applica-
tion does not require the use of event flags. When OS_FLAG_EN is set to 0, you do not need to enable or
disable any of the other #define constants in this section.

OS_FLAG_WAIT_CLR_EN
OS_FLAG_WAIT_CLR_EN enables (when set to 1) or disables (when set to 0) the code generation used to
wait for event flags to be 0 instead of 1. Generally, you want to wait for event flags to be set. However,
you might also want to wait for event flags to be clear, and thus you need to enable this option.

OS_FLAG_ACCEPT_EN
OS_FLAG_ACCEPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the func-
tion OSFlagAccept().

OS_FLAG_DEL_EN
OS_FLAG_DEL_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSFlagDel().

OS_FLAG_QUERY_EN
OS_FLAG_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the func-
tion OSFlagQuery().

17.02 Message Mailboxes

OS_MBOX_EN
This constant enables (when set to 1) or disables (when set to 0) the code generation of all
message-mailbox services and data structures, which reduces the amount of code space needed when
your application does not require the use of message mailboxes. When OS_MBOX_EN is set to 0, you do
not need to enable or disable any of the other #define constants in this section.

OS_MBOX_ACCEPT_EN
This constant enables (when set to 1) or disables (when set to 0) the code generation of the function
OSMboxAccept().
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OS_MBOX_DEL_EN
This constant enables (when set to 1) or disables (when set to 0) the code generation of the function
OSMboxDel().

OS_MBOX_POST_EN
OS_MBOX_POST_EN enables (when set to 1) or disables (when set to 0) the code generation of the func-
tion OSMboxPost(). You can disable code generation for this function if you decide to use the more
powerful function OSMboxPostOpt() instead.

OS_MBOX_POST_OPT_EN
OS_MBOX_POST_OPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the
function OSMboxPostOpt(). You can disable code generation for this function if you do not need the
additional functionality provided by OSMboxPostOpt(). OSMboxPost() generates less code.

OS_MBOX_QUERY_EN
OS_MBOX_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the func-
tion OSMboxQuery().

17.03 Memory Management

OS_MEM_EN
OS_MEM_EN enables (when set to 1) or disables (when set to 0) all code generation of the µC/OS-II parti-
tion-memory manager and its associated data structures. This feature reduces the amount of code and
data space needed when your application does not require the use of memory partitions.

OS_MEM_QUERY_EN
OS_MEM_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the func-
tion OSMemQuery().

17.04 Mutual Exclusion Semaphores

OS_MUTEX_EN
OS_MUTEX_EN enables (when set to 1) or disables (when set to 0) the code generation of all
mutual-exclusion-semaphore services and data structures, which reduces the amount of code and data
space needed when your application does not require the use of mutexes. When OS_MUTEX_EN is set to 0,
you do not need to enable or disable any of the other #define constants in this section.

OS_MUTEX_ACCEPT_EN
OS_MUTEX_ACCEPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the
function OSMutexAccept().
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OS_MUTEX_DEL_EN
OS_MUTEX_DEL_EN enables (when set to 1) or disables (when set to 0) the code generation of the func-
tion OSMutexDel().

OS_MUTEX_QUERY_EN
OS_MUTEX_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the func-
tion OSMutexQuery().

17.05 Message Queues

OS_Q_EN
OS_Q_EN enables (when set to 1) or disables (when set to 0) the code generation of all message-queue
services and data structures, which reduces the amount of code space needed when your application
does not require the use of message queues. When OS_Q_EN is set to 0, you do not need to enable or dis-
able any of the other #define constants in this section. Note that if OS_Q_EN is set to 0, the #define
constant OS_MAX_QS is irrelevant.

OS_Q_ACCEPT_EN
OS_Q_ACCEPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSQAccept().

OS_Q_DEL_EN
OS_Q_DEL_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSQDel().

OS_Q_FLUSH_EN
OS_Q_FLUSH_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSQFlush().

OS_Q_POST_EN
OS_Q_POST_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSQPost(). You can disable code generation for this function if you decide to use the more powerful
function OSQPostOpt() instead.

OS_Q_POST_FRONT_EN
OS_Q_POST_FRONT_EN enables (when set to 1) or disables (when set to 0) the code generation of the
function OSQPostFront(). You can disable code generation for this function if you decide to use the
more powerful function OSQPostOpt() instead.

OS_Q_POST_OPT_EN
OS_Q_POST_OPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the func-
tion OSQPostOpt(). You can disable code generation for this function if you do not need the additional
functionality provided by OSQPostOpt(). OSQPost() generates less code.



Semaphores 519

17

OS_Q_QUERY_EN
OS_Q_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSQQuery().

17.06 Semaphores

OS_SEM_EN
OS_SEM_EN enables (when set to 1) or disables (when set to 0) all code generation of the µC/OS-II sema-
phore manager and its associated data structures, which reduces the amount of code and data space
needed when your application does not require the use of semaphores. When OS_SEM_EN is set to 0, you
do not need to enable or disable any of the other #define constants in this section.

OS_SEM_ACCEPT_EN
OS_SEM_ACCEPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the func-
tion OSSemAccept().

OS_SEM_DEL_EN
OS_SEM_DEL_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSSemDel().

OS_SEM_QUERY_EN
OS_SEM_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the func-
tion OSSemQuery().

17.07 Task Management

OS_TASK_CHANGE_PRIO_EN
OS_TASK_CHANGE_PRIO_EN enables (when set to 1) or disables (when set to 0) the code generation of the
function OSTaskChangePrio(). If your application never changes task priorities after they are assigned,
you can reduce the amount of code space used by µC/OS-II by setting OS_TASK_CHANGE_PRIO_EN to 0.

OS_TASK_CREATE_EN
OS_TASK_CREATE_EN enables (when set to 1) or disables (when set to 0) the code generation of the
OSTaskCreate() function. Enabling this function makes µC/OS-II backward compatible with the
µC/OS task-creation function. If your application always uses OSTaskCreateExt() (recommended),
you can reduce the amount of code space used by µC/OS-II by setting OS_TASK_CREATE_EN to 0. Note
that you must set at least OS_TASK_CREATE_EN or OS_TASK_CREATE_EXT_EN to 1. If you wish, you can
use both.

OS_TASK_CREATE_EXT_EN
OS_TASK_CREATE_EN enables (when set to 1) or disables (when set to 0) the code generation of the func-
tion OSTaskCreateExt(), which is the extended, more powerful version of the two task-creation func-
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tions. If your application never uses OSTaskCreateExt(), you can reduce the amount of code space
used by µC/OS-II by setting OS_TASK_CREATE_EXT_EN to 0. Note that you need the extended task-create
function to use the stack-checking function OSTaskStkChk().

OS_TASK_DEL_EN
OS_TASK_DEL_EN enables (when set to 1) or disables (when set to 0) code generation of the function
OSTaskDel(), which deletes tasks. If your application never uses this function, you can reduce the
amount of code space used by µC/OS-II by setting OS_TASK_DEL_EN to 0.

OS_TASK_SUSPEND_EN
OS_TASK_SUSPEND_EN enables (when set to 1) or disables (when set to 0) code generation of the func-
tions OSTaskSuspend() and OSTaskResume(), which allows you to explicitly suspend and resume
tasks, respectively. If your application never uses these functions, you can reduce the amount of code
space used by µC/OS-II by setting OS_TASK_SUSPEND_EN to 0.

OS_TASK_QUERY_EN
OS_TASK_QUERY_EN enables (when set to 1) or disables (when set to 0) code generation of the function
OSTaskQuery(). If your application never uses this function, you can reduce the amount of code space
used by µC/OS-II by setting OS_TASK_QUERY_EN to 0.

17.08 Time Management

OS_TIME_DLY_HMSM_EN
OS_TIME_DLY_HMSM_EN enables (when set to 1) or disables (when set to 0) the code generation of the
function OSTimeDlyHMSM(), which is used to delay a task for a specified number of hours, minutes, sec-
onds, and milliseconds.

OS_TIME_DLY_RESUME_EN
OS_TIME_DLY_RESUME_EN enables (when set to 1) or disables (when set to 0) the code generation of the
function OSTimeDlyResume().

OS_TIME_GET_SET_EN
OS_TIME_GET_SET_EN enables (when set to 1) or disables (when set to 0) the code and data generation
of the functions OSTimeGet() and OSTimeSet(). If you don’t need to use the 32-bit tick counter
OSTime, then you can save yourself 4 bytes of data space and code space by not having the code for
these functions generated by the compiler.

17.09 Function Summary
Table 17.1 lists each µC/OS-II function by type (Service), indicates which variables enable the code
(Set to 1), and lists other configuration constants that affect the function (Other Constants).

Of course, OS_CFG.H must be included when µC/OS-II is built, in order for the desired configuration
to take effect.
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Table 17.1 µC/OS-II functions and #define configuration 
constants. 

Service Set to 1 Other Constants
Miscellaneous
OSInit() N/A OS_MAX_EVENTS

OS_Q_EN and OS_MAX_QS
OS_MEM_EN
OS_TASK_IDLE_STK_SIZE
OS_TASK_STAT_EN
OS_TASK_STAT_STK_SIZE

OSSchedLock() OS_SCHED_LOCK_EN N/A

OSSchedUnlock() OS_SCHED_LOCK_EN N/A

OSStart() N/A N/A

OSStatInit() OS_TASK_STAT_EN &&
OS_TASK_CREATE_EXT_EN

OS_TICKS_PER_SEC

OSVersion() N/A N/A

Interrupt Management
OSIntEnter() N/A N/A

OSIntExit() N/A N/A

Event Flags
OSFlagAccept() OS_FLAG_EN OS_FLAG_ACCEPT_EN

OSFlagCreate() OS_FLAG_EN OS_MAX_FLAGS

OSFlagDel() OS_FLAG_EN OS_FLAG_DEL_EN

OSFlagPend() OS_FLAG_EN OS_FLAG_WAIT_CLR_EN

OSFlagPost() OS_FLAG_EN N/A

OSFlagQuery() OS_FLAG_EN OS_FLAG_QUERY_EN

Message Mailboxes
OSMboxAccept() OS_MBOX_EN OS_MBOX_ACCEPT_EN

OSMboxCreate() OS_MBOX_EN OS_MAX_EVENTS

OSMboxDel() OS_MBOX_EN OS_MBOX_DEL_EN

OSMboxPend() OS_MBOX_EN N/A

OSMboxPost() OS_MBOX_EN OS_MBOX_POST_EN

OSMboxPostOpt() OS_MBOX_EN OS_MBOX_POST_OPT_EN

OSMboxQuery() OS_MBOX_EN OS_MBOX_QUERY_EN

Memory Partition Management
OSMemCreate() OS_MEM_EN OS_MAX_MEM_PART

OSMemGet() OS_MEM_EN N/A

OSMemPut() OS_MEM_EN N/A

OSMemQuery() OS_MEM_EN OS_MEM_QUERY_EN
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Mutex Management
OSMutexAccept() OS_MUTEX_EN OS_MUTEX_ACCEPT_EN

OSMutexCreate() OS_MUTEX_EN OS_MAX_EVENTS

OSMutexDel() OS_MUTEX_EN OS_MUTEX_DEL_EN

OSMutexPend() OS_MUTEX_EN N/A

OSMutexPost() OS_MUTEX_EN N/A

OSMutexQuery() OS_MUTEX_EN OS_MUTEX_QUERY_EN

Message Queues
OSQAccept() OS_Q_EN OS_Q_ACCEPT_EN

OSQCreate() OS_Q_EN OS_MAX_EVENTS
OS_MAX_QS

OSQDel() OS_Q_EN OS_Q_DEL_EN

OSQFlush() OS_Q_EN OS_Q_FLUSH_EN

OSQPend() OS_Q_EN N/A

OSQPost() OS_Q_EN OS_Q_POST_EN

OSQPostFront() OS_Q_EN OS_Q_POST_FRONT_EN

OSQPostOpt() OS_Q_EN OS_Q_POST_OPT_EN

OSQQuery() OS_Q_EN OS_Q_QUERY_EN

Semaphore Management
OSSemAccept() OS_SEM_EN OS_SEM_ACCEPT_EN

OSSemCreate() OS_SEM_EN OS_MAX_EVENTS

OSSemDel() OS_SEM_EN OS_SEM_DEL_EN

OSSemPend() OS_SEM_EN N/A

OSSemPost() OS_SEM_EN N/A

OSSemQuery() OS_SEM_EN OS_SEM_QUERY_EN

Task Management
OSTaskChangePrio() OS_TASK_CHANGE_PRIO_EN OS_LOWEST_PRIO

OSTaskCreate() OS_TASK_CREATE_EN OS_MAX_TASKS

OSTaskCreateExt() OS_TASK_CREATE_EXT_EN OS_MAX_TASKS
OS_TASK_STK_CLR

OSTaskDel() OS_TASK_DEL_EN OS_MAX_TASKS

OSTaskDelReq() OS_TASK_DEL_EN OS_MAX_TASKS

OSTaskResume() OS_TASK_SUSPEND_EN OS_MAX_TASKS

OSTaskStkChk() OS_TASK_CREATE_EXT_EN OS_MAX_TASKS

OSTaskSuspend() OS_TASK_SUSPEND_EN OS_MAX_TASKS

OSTaskQuery() OS_TASK_QUERY_EN OS_MAX_TASKS

Table 17.1 µC/OS-II functions and #define configuration 
constants. (Continued)

Service Set to 1 Other Constants
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Time Management
OSTimeDly() N/A N/A

OSTimeDlyHMSM() OS_TIME_DLY_HMSM_EN OS_TICKS_PER_SEC

OSTimeDlyResume() OS_TIME_DLY_RESUME_EN OS_MAX_TASKS

OSTimeGet() OS_TIME_GET_SET_EN N/A

OSTimeSet() OS_TIME_GET_SET_EN N/A

OSTimeTick() N/A N/A

User-Defined Functions
OSTaskCreateHook() OS_CPU_HOOKS_EN N/A

OSTaskDelHook() OS_CPU_HOOKS_EN N/A

OSTaskStatHook() OS_CPU_HOOKS_EN N/A

OSTaskSwHook() OS_CPU_HOOKS_EN N/A

OSTimeTickHook() OS_CPU_HOOKS_EN N/A

Table 17.1 µC/OS-II functions and #define configuration 
constants. (Continued)

Service Set to 1 Other Constants
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Chapter 18

PC Services
The code in this book was tested on a PC. It was convenient to create a number of services (i.e., func-
tions) to access some of the capabilities of a PC. These services are invoked from the test code and are
encapsulated in a file called PC.C. The functions provided in this chapter could be of some use to you,
because industrial PCs are so popular as embedded systems platforms. These services assume that you
are running under DOS or a DOS box under Microsoft Windows 95, 98, NT, or 2000. You should note
that under these environments, you have an emulated DOS (i.e., a virtual x86 session) and not an actual
one. The behavior of some functions might be altered because of this.

The files PC.C and PC.H are found in the \SOFTWARE\BLOCKS\PC\BC45 directory. These functions
encapsulate services that are available on a PC. Encapsulation allows you to easily adapt the code to a
different compiler. PC.C basically contains three types of services: character-based display, elapsed-time
measurement, and miscellaneous. All functions start with the prefix PC_.

18.00 Character-Based Display
PC.C provides services to display ASCII (and special) characters on a PC’s VGA display. In normal
mode (i.e., character mode), a PC’s display can hold up to 2,000 characters organized as 25 rows (i.e.,
Y) by 80 columns (i.e., X), as shown in Figure 18.1. Please disregard the aspect ratio of the figure. The
actual aspect ratio of a monitor is generally 4 × 3. Video memory on a PC is memory mapped and, on a
VGA monitor, video memory starts at absolute memory location 0x000B8000 (or using segment:offset
notation, B800:0000).
 525
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Figure 18.1 80 x 25 characters on a VGA monitor.

Each displayable character requires two bytes to display. The first byte (lowest memory location) is
the character that you want to display, while the second byte (next memory location) is an attribute that
determines the foreground/background-color combination of the character. The foreground color is
specified in the lower four bits of the attribute, while the background color appears in bits four to six.
Finally, the most significant bit determines whether the character blinks (when 1) or not (when 0). The
character and attribute bytes are shown in Figure 18.2.
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Figure 18.2 Character and attribute bytes on a VGA monitor.

Table 18.1 shows the possible colors that can be obtained from the PC’s VGA character mode.  

Table 18.1 Attribute byte values. 

Blink (B7)

Blink? #define Hex

No 0x00

Yes DISP_BLINK 0x80

Background Color (B6 B5 B4)

Color #define Hex

Black DISP_BGND_BLACK 0x00

Blue DISP_BGND_BLUE 0x10

Green DISP_BGND_GREEN 0x20

Cyan DISP_BGND_CYAN 0x30

Red DISP_BGND_RED 0x40

Purple DISP_BGND_PURPLE 0x50

Brown DISP_BGND_BROWN 0x60

Light Gray DISP_BGND_LIGHT_GRAY 0x70

B7 B6 B5 B4 B3 B2 B1 B0

Background Color

Foreground Color
(Character Color)

Blink
   0 = no blink
   1 = blink

B7 B6 B5 B4 B3 B2 B1 B0

1st Byte
(Mem + 0)

2nd Byte
(Mem + 1)

Character to display
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You should note that you can only have eight possible background colors but a choice of 16 fore-
ground colors. PC.H contains #defines that allow you to select the proper combination of foreground
and background colors. These #defines are shown in Table 18.1. For example, to obtain a non-blinking
white character on a black background, you simply add DISP_FGND_WHITE and DISP_BGND_BLACK
(FGND means foreground, and BGND is background). This value corresponds to a hexadecimal value of
0x07, which happens to be the default video attribute of a displayable character on a PC. You should
note that because DISP_BGND_BLACK has a value of 0x00, you don’t actually need to specify it, and thus
the attribute for the same white character could just as well have been specified as DISP_FGND_WHITE.
You should use the #define constants instead of the hexadecimal values to make your code more read-
able.

The display functions in PC.C are used to write ASCII (and special) characters anywhere on the
screen using X and Y coordinates. The coordinate system of the display is shown in Figure 18.1. You
should note that position 0,0 is located at the upper-left corner — as opposed to the bottom left-corner
as you might expect, which makes the computation of the location of each character to display easier to
determine. The address in video memory for any character on the screen is given by

Address of Character = 0x000B8000 + Y * 160 + X * 2

The address of the attribute byte is at the next memory location or
Address of Attribute = 0x000B8000 + Y * 160 + X * 2 + 1

Foreground Color (B3 B2 B1 B0)

Color #define Hex

Black DISP_FGND_BLACK 0x00

Blue DISP_FGND_BLUE 0x01

Green DISP_FGND_GREEN 0x02

Cyan DISP_FGND_CYAN 0x03

Red DISP_FGND_RED     0x04

Purple DISP_FGND_PURPLE       0x05

Brown DISP_FGND_BROWN        0x06

Light Gray DISP_FGND_LIGHT_GRAY   0x07

Dark Gray DISP_FGND_DARK_GRAY    0x08

Light Blue DISP_FGND_LIGHT_BLUE   0x09

Light Green DISP_FGND_LIGHT_GREEN  0x0A

Light Cyna DISP_FGND_LIGHT_CYAN   0x0B

Light Red DISP_FGND_LIGHT_RED    0x0C

Light Purple DISP_FGND_LIGHT_PURPLE 0x0D

Yellow DISP_FGND_YELLOW       0x0E

White DISP_FGND_WHITE        0x0F

Table 18.1 Attribute byte values. (Continued)

Blink (B7)
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The display functions provided in PC.C perform direct writes to video RAM even though BIOS ser-
vices in most PCs can do the same thing but in a portable fashion. I chose to write directly to video
memory for performance reasons.

PC.C contains the following five functions, which are further described in the interface section of
this chapter.

PC_DispChar() To display a single ASCII character anywhere on the
screen

PC_DispClrCol() To clear a single column

PC_DispClrRow() To clear a single row (or line)

PC_DispClrScr() To clear the screen

PC_DispStr() To display an ASCII string anywhere on the screen

18.01 Saving and Restoring DOS’s Context
The current DOS environment is saved by calling PC_DOSSaveReturn() (see Listing 18.1) and is called
by main() to:

1. Set up µC/OS-II’s context switch vector,

2. Set up the tick ISR vector,

3. Save DOS’s context so that we can return to DOS when we need to terminate execution of a 
µC/OS-II based application.

A lot happens in PC_DOSSaveReturn() so you might need to look at the code in Listing 18.1 to follow
along. 

Listing 18.1 Saving the DOS environment. 
void PC_DOSSaveReturn (void)

{

    PC_ExitFlag  = FALSE;                                                    (1)

    OSTickDOSCtr =     1;                                                    (2)

    PC_TickISR   = PC_VectGet(VECT_TICK);                                    (3)

    

    OS_ENTER_CRITICAL();

    PC_VectSet(VECT_DOS_CHAIN, PC_TickISR);                                  (4)

    OS_EXIT_CRITICAL();

    

    setjmp(PC_JumpBuf);                                                      (5)
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L18.1(1) PC_DOSSaveReturn() starts by setting the flag PC_ExitFlag to FALSE, indicating that we are
not returning to DOS.

L18.1(2) Then, PC_DOSSaveReturn() initializes OSTickDOSCtr to 1 because this variable is decre-
mented in OSTickISR(). A value of 0 causes this value to wrap around to 255 when decre-
mented by OSTickISR().

L18.1(3)

L18.1(4) PC_DOSSaveReturn() then saves DOS’s tick handler in a free vector-table entry so it can be
called by µC/OS-II’s tick handler (this is called chaining the vectors).

L18.1(5) Next, PC_DOSSaveReturn() calls setjmp(), which captures the state of the processor (i.e.,
the contents of all important registers) in a structure called PC_JumpBuf. Capturing the pro-
cessor's context allows us to return to PC_DOSSaveReturn() (from anywhere) and execute
the code immediately following the call to setjmp(). Because PC_ExitFlag was initialized
to FALSE [see L18.1(1)], PC_DOSSaveReturn() skips the code in the if statement and returns
to the caller [i.e., main()].

L18.2(1)

L18.2(2) When you want to return to DOS, all you have to do is call PC_DOSReturn() (see Listing
18.2), which sets PC_ExitFlag to TRUE and executes a longjmp().

L18.1(5) This action brings the processor back in PC_DOSSaveReturn() [just after the call to setjmp()].

L18.1(6) This time, however, PC_ExitFlag is TRUE, and the code following the if statement is exe-
cuted.

L18.1(7)

L18.1(8)

L18.1(9) PC_DOSSaveReturn() changes the tick rate back to 18.2Hz, restores the PC’s tick-ISR han-
dler, clears the screen, and returns to the DOS prompt through the exit(0) function. 

    if (PC_ExitFlag == TRUE) {

        OS_ENTER_CRITICAL();

        PC_SetTickRate(18);                                                  (6)

        PC_VectSet(VECT_TICK, PC_TickISR);                                   (7)

        OS_EXIT_CRITICAL();

        PC_DispClrScr(DISP_FGND_WHITE + DISP_BGND_BLACK);                    (8)

        exit(0);                                                             (9)

    }

}

Listing 18.1 Saving the DOS environment. (Continued)
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18.02 Elapsed-Time Measurement
The elapsed-time-measurement functions are used to determine how much time a function takes to exe-
cute.  Time measurement is performed by using the PC’s 82C54 timer #2.  You make time measurement
by wrapping the code to measure by the two functions PC_ElapsedStart() and PC_ElapsedStop().
However, before you can use these two functions, you need to call the function PC_ElapsedInit().
PC_ElapsedInit() basically computes the overhead associated with the other two functions.  This way,
the execution time (in microseconds) returned by PC_ElapsedStop() consists exclusively of the code
you are measuring.  Note that none of these functions are reentrant, and thus you must be careful that
you do not invoke them from multiple tasks at the same time.

18.03 Miscellaneous
PC_GetDateTime() is a function that obtains the PC’s current date and time and formats this informa-
tion into an ASCII string. The format is

“YYYY-MM-DD  HH:MM:SS” 

and you need at least 21 characters (including the NULL character) to hold this string. You should note
that there are two spaces between the date and the time, which explains why you need 21 characters
instead of 20. PC_GetDateTime() uses the Borland C/C++ library functions gettime() and
getdate(), which should have their equivalents on other DOS compilers.

PC_GetKey() is a function that checks to see if a key has been pressed and, if so, obtains that key,
and returns it to the caller. PC_GetKey() uses the Borland C/C++ library functions kbhit() and
getch(), which again have their equivalents on other DOS compilers.

PC_SetTickRate() allows you to change the tick rate for µC/OS-II by specifying the desired fre-
quency. Under DOS, a tick occurs 18.20648 times per second, or every 54.925 ms. This is because the
82C54 chip used didn’t get its counter initialized and the default value of 65,535 takes effect. Had the
chip been initialized with a divide by 59,659, the tick rate would have been a very nice 20.000Hz! I
decided to change the tick rate to something more exciting and thus decided to use about 200Hz (actu-
ally 199.9966). The code found in OS_CPU_A.ASM calls the DOS-tick handler one time out of 11. This
action is done to ensure that some of the housekeeping needed in DOS is maintained. You would not
need to do this if you were to set the tick rate to 20Hz. Before returning to DOS, PC_SetTickRate() is
called by specifying 18 as the desired frequency. PC_SetTickRate() knows that you actually mean
18.2Hz and correctly sets the 82C54.

The last two functions in PC.C are used to get and set an interrupt vector. PC_VectGet() and PC_VectSet()
should be compiler-independent as long as the compiler support the macros MK_FP() (make far pointer),
FP_OFF() (get the offset portion of a far pointer), and FP_SEG() (get the segment of a far pointer).

Listing 18.2 Setting up to return to DOS.
void PC_DOSReturn (void)

{

    PC_ExitFlag = TRUE;                                                      (1)

    longjmp(PC_JumpBuf, 1);                                                  (2)

}
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18.04 Interface Functions 
The following section provides a reference section for the PC services.
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PC_DispChar()
void PC_DispChar(INT8U x, INT8U y, INT8U c, INT8U color)

PC_DispChar() allows you to display a single ASCII (or special) character anywhere on the display.

Arguments
x and y specifies the coordinates (col, row) where the character will appear. Rows (i.e.,

lines) are numbered from 0 to DISP_MAX_Y – 1, and columns are numbered from 0
to DISP_MAX_X – 1 (see PC.C). 

c is the character to display. You can specify any ASCII or special characters if c has a
value higher than 128.

color specifies the contents of the attribute byte and thus the color combination of the character
to be displayed. You can add one DISP_FGND_??? (see PC.H) and one DISP_BGND_???
(see PC.H) to obtain the desired color combination.

Returned Values
none

Notes/Warnings
none

Example

void Task (void *pdata)

  {

      .

      .

      for (;;) {

         .

         PC_DispChar(0, 0, ‘$’, DISP_FGND_WHITE);
         .

         .

      }

   }
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PC_DispClrCol()
void PC_DispClrCol(INT8U x, INT8U color)

PC_DispClrCol() allows you to clear the contents of a column (all 25 characters). 

Arguments
x specifies which column cleared.  Columns are numbered from 0 to DISP_MAX_X – 1

(see PC.C).

color specifies the contents of the attribute byte. Because the character used to clear a column
is the space character (i.e., ' '), only the background color appears.  You can thus specify
any of the DISP_BGND_??? colors. 

Returned Values
none

Notes/Warnings
none

Example

void Task (void *pdata)

{

   .

   .

   for (;;) {

      .

      PC_DispClrCol(0, DISP_BGND_BLACK);
      .

      .

   }

}
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PC_DispClrRow()
void PC_DispClrRow(INT8U y, INT8U color)

PC_DispClrRow() allows you to clear the contents of a row (all 80 characters). 

Arguments
y specifies which row (i.e., line) is cleared.  Rows are numbered from 0 to DISP_MAX_Y –

1 (see PC.C). 

color specifies the contents of the attribute byte.  Because the character used to clear a row is
the space character (i.e., ' '), only the background color appears.  You can thus specify
any of the DISP_BGND_??? colors.

Returned Values
none

Notes/Warnings
none

Example

void Task (void *pdata)

{

   .

   .

   for (;;) {

      .

      PC_DispClrRow(10, DISP_BGND_BLACK);
      .

      .

   }

}
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PC_DispClrScr()
void PC_DispClrScr(INT8U color)

PC_DispClrScr() allows you to clear the entire display. 

Arguments
color specifies the contents of the attribute byte. Because the character used to clear the

screen is the space character (i.e., ' '), only the background color appears. You can thus
specify any of the DISP_BGND_??? colors. 

Returned Values
none

Notes/Warnings
1. You should use DISP_FGND_WHITE instead of DISP_BGND_BLACK because you don’t want to leave the 

attribute field with black on black.

Example

void Task (void *pdata)

{

      .

      .

      PC_DispClrScr(DISP_FGND_WHITE);
      for (;;) {

         .

         .

         .

      }

}
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PC_DispStr()
void PC_DispStr(INT8U x, INT8U y, INT8U *s, INT8U color)

PC_DispStr() allows you to display an ASCII string.  In fact, you could display an array containing any
of 255 characters, as long as the array itself is NULL terminated. 

Arguments
x and y specifies the coordinates (col, row) where the first character will appear. Rows (i.e.,

lines) are numbered from 0 to DISP_MAX_Y –  1, and columns are numbered from 0 to
DISP_MAX_X –  1 (see PC.C). 

s is a pointer to the array of characters to display.  The array must be NULL terminated.
Note that you can display any characters from 0x01 to 0xFF.  

color specifies the contents of the attribute byte and thus the color combination of the characters
to be displayed.  You can add one DISP_FGND_??? (see PC.H) and one DISP_BGND_???
(see PC.H) to obtain the desired color combination. 

Returned Values
none

Notes/Warnings
1. All the characters of the string or array are displayed with the same color attributes.

Example #1
The code below displays the current value of a global variable called Temperature.  The color used
depends on whether the temperature is below 100 (white), below 200 (yellow), or exceeds 200 (blinking
white on a red background).

FP32 Temperature;

void Task (void *pdata)

{

    char s[20];

   .

   .

   PC_DispStr(0, 0, “Temperature:”, DISP_FGND_YELLOW + DISP_BGND_BLUE);
   for (;;) {

      sprintf(s, “%6.1f”, Temperature);

      if (Temperature < 100.0) {

          color = DISP_FGND_WHITE;

      } else if (Temperature < 200.0) {

          color = DISP_FGND_YELLOW;

      } else {
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Example #2
The code below displays a square box 10 characters wide by seven characters high in the center of the
screen.

          color = DISP_FGND_WHITE + DISP_BGND_RED + DISP_BLINK;

      }

      PC_DispStr(13, 0, s, color);
      .

      .

   }

}

INT8U  Box[7][11] = {

    {0xDA, 0xC4, 0xC4, 0xC4, 0xC4, 0xC4, 0xC4, 0xC4, 0xC4, 0xBF, 0x00},

    {0xB3, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0xB3, 0x00},

    {0xB3, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0xB3, 0x00},

    {0xB3, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0xB3, 0x00},

    {0xB3, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0xB3, 0x00},

    {0xB3, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0xB3, 0x00},

    {0xC0, 0xC4, 0xC4, 0xC4, 0xC4, 0xC4, 0xC4, 0xC4, 0xC4, 0xD9, 0x00}

};

void Task (void *pdata)

{

    INT8U i;

   .

   .

   for (i = 0; i < 7; i++) {

      PC_DispStr(35, i + 9, Box[i], DISP_FGND_WHITE);
   } 

   for (;;) {

      .

      .

   }

}
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PC_DOSReturn()
void PC_DOSReturn(void)

PC_DOSReturn() allows your application to return to DOS. It is assumed that you have previously
called PC_DOSSaveReturn() to save the processor’s important registers in order to properly return to
DOS. See Chapter 1 for a description of how to use this function.

Arguments
none

Returned Values
none

Notes/Warnings
1. You must have called PC_DOSSaveReturn() prior to calling PC_DOSReturn().

Example

void Task (void *pdata)

{

   INT16U key;

   .

   .

   for (;;) {

      .

      .

      if (PC_GetKey(&key) == TRUE) {

          if (key == 0x1B) {

              PC_DOSReturn();                  /* Return to DOS */
          }

      }

      .

      .

   }

}
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PC_DOSSaveReturn()
void PC_DOSSaveReturn(void)

PC_DOSSaveReturn() allows your application to save the processor’s important registers in order to
properly return to DOS before you actually start multitasking with µC/OS-II. You normally call this
function from main(), as shown in the example code.

Arguments
none

Returned Values
none

Notes/Warnings
1. You must call this function prior to setting µC/OS-II’s context-switch vector as shown with exam-

ple.

Example

void  main (void)

{

    OSInit();                  /* Initialize uC/OS-II              */

    .

    PC_DOSSaveReturn();        /* Save DOS’s environment           */
    .

    PC_VectSet(uCOS, OSCtxSw); /* uC/OS-II's context switch vector */

    OSTaskCreate(…);

    .

    .

    OSStart();                 /* Start multitasking               */

}
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PC_ElapsedInit()
void PC_ElapsedInit(void)

PC_ElapsedInit() is invoked to compute the overhead associated with the PC_ElapsedStart() and
PC_ElapsedStop() calls.  This allows PC_ElapsedStop() to return the execution time (in microsec-
onds) of the code you are trying to measure.

Arguments
none

Returned Values
none

Notes/Warnings
1. You must call this function prior to calling either PC_ElapsedStart() or PC_ElapsedStop().

Example

void  main (void)

{

    OSInit();                  /* Initialize uC/OS-II              */

    .

    .

    PC_ElapsedInit();          /* Compute overhead of elapse meas. */
    .

    .

    OSStart();                 /* Start multitasking               */

}
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PC_ElapsedStart()
void PC_ElapsedStart(void)

PC_ElapsedStart() is used in conjunction with PC_ElapsedStop() to measure the execution time of
some of your application code.

Arguments
none

Returned Values
none

Notes/Warnings
1. You must call PC_ElapsedInit() before you use either PC_ElapsedStart() or

PC_ElapsedStop().

2. This function is non-reentrant and cannot be called by multiple tasks without proper protection 
mechanisms (i.e., semaphores, locking the scheduler, etc.).

3. The execution time of your code must be less than 54.93ms in order for the elapsed-time-measure-
ment functions to work properly.

Example

void  main (void)

{

    OSInit();                  /* Initialize uC/OS-II              */

    .

    .

    PC_ElapsedStart();          /* Compute overhead of elapse meas. */   

    .

    .

    OSStart();                 /* Start multitasking               */

}



Interface Functions 543

18
void Task (void *pdata)

{

   INT16U time_us;

   .

   .

   for (;;) {

      .

      .

      PC_ElapsedStart();
      /* Code you want to measure the execution time */

      time_us = PC_ElaspedStop();
      .

      .

   }

}

Example
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PC_ElapsedStop()
INT16U PC_ElapsedStop(void)

PC_ElapsedStop() is used in conjunction with PC_ElapsedStart() to measure the execution time of
some of your application code.

Arguments
none

Returned Values
The execution time of your code that was wrapped between PC_ElapsedStart() and PC_ElapsedStop()
is returned in microseconds.

Notes/Warnings
1. You must call PC_ElapsedInit() before you use either PC_ElapsedStart() or

PC_ElapsedStop().

2. This function is non-reentrant and cannot be called by multiple tasks without proper protection 
mechanisms (i.e., semaphores, locking the scheduler, etc.).

3. The execution time of your code must be less than 54.93ms in order for the elapsed-time-measure-
ment functions to work properly.

Example
See PC_ElapsedStart(), page 542.
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PC_GetDateTime()
void PC_GetDateTime(char *s)

PC_GetDateTime() is used to obtain the current date and time from the PC’s real-time clock chip and
return this information in an ASCII string that can hold at least 21 characters.

Arguments
s is a pointer to the storage area where the ASCII string will be deposited. The format of

the ASCII string is

"YYYY-MM-DD  HH:MM:SS" 

and requires 21 bytes of storage (note that there are two spaces between the date and the
time).

Returned Values
none

Notes/Warnings
none

Example

void Task (void *pdata)

{

   char s[80];

   .

   .

   for (;;) {

      .

      .

      PC_GetDateTime(&s[0]);
      PC_DispStr(0, 24, s, DISP_FGND_WHITE);

      .

      .

   }

}
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PC_GetKey()
BOOLEAN PC_GetDateTime(INT16S *key)

PC_GetKey() is used to see if a key has been pressed on the PC’s keyboard, and if so, obtain the value of
the key pressed.  You normally invoke this function every so often (i.e., poll the keyboard) to see if a key
has been pressed.  Note that the PC actually obtains key presses through an ISR and buffers key presses.
Up to 10 keys are buffered by the PC.

Arguments
key is a pointer to where the key value will be stored.  If no key has been pressed, the value

contains 0x0000.

Returned Values
TRUE is a key has been pressed, and FALSE otherwise.

Notes/Warnings
none

Example

void Task (void *pdata)

{

   INT16S   key;

   BOOLEAN  avail;

   .

   .

   for (;;) {

      .

      .

      avail = PC_GetKey(&key);
      if (avail == TRUE) {

         /* Process key pressed */

      }

      .

      .

   }

}
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PC_SetTickRate()
void PC_SetTickRate(INT16U freq)

PC_SetTickRate() is used to change the PC’s tick rate from the standard 18.20648Hz to something
faster.  A tick rate of 200Hz is a multiple of 18.20648Hz (the multiple is 11).

Arguments
freq is the desired frequency of the ticker.

Returned Values
none

Notes/Warnings
1. You can only make the ticker faster than 18.20648Hz.

2. The higher the frequency, the more overhead you impose on the CPU.

Example

void  Task (void *pdata)

{

    .

    .

    OS_ENTER_CRITICAL();

    PC_VectSet(0x08, OSTickISR);

    PC_SetTickRate(400);       /* Reprogram PC’s tick rate to 400 Hz */
    OS_EXIT_CRITICAL();

    .

    .

    for (;;) {

        .

        .

    }

}
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PC_VectGet()
void *PC_VectGet(INT8U vect)

PC_VectGet() is used to obtain the address of the interrupt handler specified by the interrupt-vector
number.  An 80x86 processor supports up to 256 interrupt/exception handlers.

Arguments
vect is the interrupt-vector number, a number between 0 and 255.

Returned Values
The address of the current interrupt/exception handler for the specified interrupt-vector number.

Notes/Warnings
1. Vector number 0 corresponds to the reset handler.

2. It is assumed that the 80x86 code is compiled using the large model option and thus all pointers 
returned are far pointers.

3. It is assumed that the 80x86 is running in real mode.

Example

void  Task (void *pdata)

{

    void (*p_tick_isr)(void);

    .

    .

    p_tick_isr = PC_VectGet(0x08);  /* Get tick handler address */
    .

    .

    for (;;) {

        .

        .

    }

}
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PC_VectSet()
void PC_VectSet(INT8U vect, void *(pisr)(void))

PC_VectSet() is used to set the contents of an interrupt-vector-table location. An 80x86 processor sup-
ports up to 256 interrupt/exception handlers.

Arguments
vect is the interrupt-vector number, a number between 0 and 255.

pisr is the address of the interrupt/exception handler.

Returned Values
none

Notes/Warnings
1. You should be careful when setting interrupt vectors.  Some interrupt vectors are used by the operat-

ing system (DOS and/or µC/OS-II).

2. It is assumed that the 80x86 code is compiled using the large model option and thus all pointers 
returned are far pointers..

Example

void  InterruptHandler (void)

{

}

void  Task (void *pdata)

{

    .

    .

    PC_VectSet(64, InterruptHandler);
    .

    .

    for (;;) {

        .

        .

    }

}
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Appendix A

C Coding Conventions
Conventions should be established early in a project. These conventions are necessary to maintain con-
sistency throughout the project. Adopting conventions increases productivity and simplifies project
maintenance.  

Many ways exist to code a program in C (or any other language). The style you use is just as good as
any other, as long as you strive to attain the following goals:

• Portability

• Consistency

• Neatness

• Easy maintenance

• Easy understanding

• Simplicity

Whichever style you use, I emphasize that it should be adopted consistently throughout all your
projects.  I further suggest that a single style be adopted by all team members in a large project.  To this
end, I recommend that a C programming style document be formalized for your organization.  Adopting
a common coding style reduces code maintenance headaches and costs.  Adopting a common style helps
avoid code rewrites. This section describes the C programming style I use.  The main emphasis on the
programming style presented here is to make the source code easy to follow and maintain.

I don’t like to limit the width of my C source code to 80 characters. My limitation is actually how
many characters can be printed on an 8.5" by 11" page, using an 8-point, fixed-width font.  With an
8-point font, you can accommodate up to 132 characters and have enough room on the left of the page
for holes for insertion in a three-ring binder.  Allowing 132 characters per line prevents having to inter-
leave source code with comments. 
 551
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A.1 Header
The header of a C source file is shown below.  Your company name and address can be on the first few
lines, followed by a title describing the contents of the file.  A copyright notice is included to give warn-
ing of the proprietary nature of the software.

The name of the file is supplied and is followed by the name of the programmer(s).  The name of the
programmer who created the file is given first.  The last item in the header is a description of the con-
tents of the file.

I like to dictate when page breaks occur in my listings if my code doesn’t fit on a printed page.  In
fact, I like to find a logical spot such as after a comment block if both the comment block and the actual
code don’t fit on one page.  For historical reasons, I insert the special comment /*$PAGE*/ followed by
a form feed character (0x0C).  I like to use the /*$PAGE*/ because it tells the reader where the page
break occurs.

A.2 Include Files
The header files needed for your project immediately follow the revision history section.  You can either
list only the header files required for the module or combine header files in a single header file as I do in
a file called INCLUDES.H.  I like to use an INCLUDES.H header file because it prevents you from having to
remember which header file goes with which source file, especially when new modules are added.  The
only inconvenience is that it takes longer to compile each file.

/*

************************************************************************************************

*                                          Company Name

*                                             Address

*

*                         (c) Copyright 20xx, Company Name, City, State

*                                       All Rights Reserved

*

*

* Filename     :

* Programmer(s):

* Description  :

************************************************************************************************

*/

/*$PAGE*/

/*

************************************************************************************************                           
*                                        INCLUDE FILES

************************************************************************************************                           
*/
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A.3 Naming Identifiers
C compilers, which conform to the ANSI C standard (most C compilers do by now), allow up to 32
characters for identifier names.  Identifiers are variables, structure/union members, functions, macros,
#defines, and so on.  Descriptive identifiers can be formulated using this 32-character feature and use
acronyms, abbreviations, and mnemonics (see Section Section A.4 , "Acronyms, Abbreviations, and
Mnemonics").  Identifier names should reflect the use of the element.  I like to use a hierarchical method
when creating an identifier.  For instance, the function OSSemPend() indicates that it is part of the oper-
ating system (OS), it is a semaphore (Sem), and the operation being performed is to wait (Pend) for the
semaphore.  This method allows me to group all functions related to semaphores together.  You should
notice that some of the functions in µC/OS-II start with OS_ instead of OS.  This is done to show you that
the OS_ functions are internal to µC/OS-II even, though they are global functions.

Variable names should be declared on separate lines rather than combining them on a single line.
Separate lines make it easy to provide a descriptive comment for each variable.

I use the file name as a prefix for variables that are either local (static) or global to the file.  This
process makes it clear that the variables are being used locally and globally.  For example, local and glo-
bal variables of a file named KEY.C are declared as follows

Uppercase characters are used to separate words in an identifier.  I prefer to use this technique rather
than making use of the underscore character (_) because underscores do not add meaning to names and
also use up character spaces.

Global variables (external to the file) can use any name, as long as they contain a mixture of upper-
case and lowercase characters and are prefixed with the module/file name (i.e., all global keyboard–
related variable names are prefixed with the word Key).

Formal arguments to a function and local variables within a function are declared in lowercase.  The
lowercase makes it obvious that such variables are local to a function; global variables contain a mixture
of upper and lowercase characters.  To make variables readable, you can use the underscore character (_).

Within functions, certain variable names can be reserved to always have the same meaning.  Some
examples are given below, but others can be used as long as consistency is maintained.

i, j,   and k for loop counters

p1, p2, ... pn for pointers

c, c1,  ... cn for characters

s, s1,  ... sn for strings

#include "INCLUDES.H"

/*$PAGE*/

static  INT16U KeyCharCnt;                  /* Number of keys pressed            */

static  char   KeyInBuf[100];               /* Storage buffer to hold chars      */

        char   KeyInChar;                   /* Character typed                   */

/*$PAGE*/
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ix, iy, and iz for intermediate integer variables

fx, fy, and fz for intermediate floating-point variables

To summarize, use

formal parameters in a function declaration should only contain lowercase characters.

auto variable names should only contain lowercase characters.

static variables and functions should use the file/module name (or a portion of it) as a prefix and
should use of upper/lowercase characters.

extern variables and functions should use the file/module name (or a portion of it) as a prefix and
should use of upper/lowercase characters.

A.4 Acronyms, Abbreviations, and Mnemonics
When creating names for variables and functions (identifiers), use acronyms (e.g., OS, ISR, and TCB),
abbreviations (e.g., buf & doc), and mnemonics (e.g., clr, and cmp).  The use of acronyms, abbrevia-
tions, and mnemonics allows an identifier to be descriptive while requiring fewer characters. Unfortu-
nately, if acronyms, abbreviations, and mnemonics are not used consistently, they can add confusion.
To ensure consistency, I have opted to create a list of acronyms, abbreviations, and mnemonics that I use
in all my projects.  The same acronym, abbreviation, or mnemonic is used throughout, after it is
assigned. I call this list the Acronym, Abbreviation, and Mnemonic Dictionary, and the list for µC/OS-II
is shown in Table A.1.  As I need more acronyms, abbreviations, or mnemonics, I simply add them to
the list.

Table A.1 Acronyms, abbreviations, and mnemonics used in 
this book. 

Acronym, Abbreviation, or 
Mnemonic

Meaning

Addr Address

Blk Block

Chk Check

Clr Clear

Cnt Count

CPU Central Processing Unit

Ctr Counter

Ctx Context

Cur Current

Del Delete

Dly Delay
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Err Error

Ext Extension

FP Floating Point

Grp Group

HMSM Hours Minutes Seconds Milliseconds

ID Identifier

Init Initialize

Int Interrupt

ISR Interrupt Service Routine

Max Maximum

Mbox Mailbox

Mem Memory

Msg Message

N Number of

Opt Option

OS Operating System

Ovf Overflow

Prio Priority

Ptr Pointer

Q Queue

Rdy Ready

Req Request

Sched Scheduler

Sem Semaphore

Stat Status or Statistic

Stk Stack

Sw Switch

Table A.1 Acronyms, abbreviations, and mnemonics used in 
this book. (Continued)

Acronym, Abbreviation, or 
Mnemonic

Meaning
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There might be instances where one list for all products doesn’t make sense. For instance, if you are
an engineering firm working on a project for different clients and the products that you develop are
totally unrelated, then a different list for each project is more appropriate. The vocabulary for the farm-
ing industry is not the same as the vocabulary for the defense industry. I use the rule that if all products
are similar, they use the same dictionary.

A common dictionary to a project team also increases the team’s productivity. It is important that
consistency be maintained throughout a project, irrespective of the individual programmer(s). After buf
has been agreed to mean buffer it should be used by all project members instead of having some individ-
uals use buffer and others use bfr. To further this concept, you should always use buf even if your
identifier can accommodate the full name; stick to buf even if you can fully write the word buffer.

A.5 Comments
I find it very difficult to mentally separate code from comments when code and comments are inter-
leaved.  Because of this, I never interleave code with comments.  Comments are written to the right of
the actual C code.  When large comments are necessary, they are written in the function description
header.

Comments are lined up as shown in the following example.  The comment terminators (*/) do not
need to be lined up, but for neatness I prefer to do so.  It is not necessary to have one comment per line
because a comment can apply to a few lines. 

Sys System

Tbl Table

TCB Task Control Block

TO Timeout

/*

************************************************************************************************

*                                          atoi()

*

* Description : Function to convert string 's' to an integer.

* Arguments   : ASCII string to convert to integer.

*               (All characters in the string must be decimal digits (0..9))

* Returns     : String converted to an 'int'

************************************************************************************************

*/

Table A.1 Acronyms, abbreviations, and mnemonics used in 
this book. (Continued)

Acronym, Abbreviation, or 
Mnemonic

Meaning
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A.6 #defines 
Header files (.H) and C source files (.C) might require that constants and macros be defined.  Constants
and macros are always written in uppercase with the underscore character used to separate words.  Note
that hexadecimal numbers are always written with a lowercase x and all uppercase letters for hexadeci-
mal A through F.  Also, you should note that the contant names are all lined up, as well as their values.

A.7 Data Types
C allows you to create new data types using the typedef keyword.  I declare all data types using upper-
case characters and follow the same rule used for constants and macros. Because of the context in which
constants, macros, and data types are used, confusion between the elements does not occur.  Because
different microprocessors have different word lengths, I like to declare the following data types (assum-
ing Borland C++ v4.51)

int atoi (char *s)

{

    int n;                                  /* Partial result of conversion                   */

    n = 0;                                  /* Initialize result                              */

    while (*s >= '0' && *s <= '9' && *s) {  /* For all valid characters and not end of string */

        n = 10 * n + *s - '0';              /* Convert char to int and add to partial result  */

        s++;                                /* Position on next character to convert          */

    }

    return (n);                             /* Return the result of the converted string      */

}

/*$PAGE*/

/*

************************************************************************************************

*                                        CONSTANTS & MACROS

************************************************************************************************

*/

#define  KEY_FF           0x0F

#define  KEY_CR           0x0D

#define  KEY_BUF_FULL()  (KeyNRd > 0)

/*$PAGE*/
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Using these #defines, you always know the size of each data type.

A.8 Local Variables
Some source modules require that local variables be available.  These variables are only needed for the
source file (file scope) and should be hidden from the other modules.  Hiding these variables is accom-
plished in C by using the static keyword.  Variables can either be listed in alphabetical order or in
functional order.

/*

************************************************************************************************

*                                            DATA TYPES

************************************************************************************************

*/

typedef  unsigned char  BOOLEAN;            /* Boolean               */

typedef  unsigned char  INT8U;              /*  8 bit unsigned       */

typedef  char           INT8S;              /*  8 bit signed         */

typedef  unsigned int   INT16U;             /* 16 bit unsigned       */

typedef  int            INT16S;             /* 16 bit signed         */

typedef  unsigned long  INT32U;             /* 32 bit unsigned       */

typedef  long           INT32S;             /* 32 bit signed         */

typedef  float          FP;                 /* Floating Point        */

/*$PAGE*/

/*

************************************************************************************************

*                                          LOCAL VARIABLES

************************************************************************************************

*/

static  char    KeyBuf[100];

static  INT16S  KeyNRd;

/*$PAGE*/
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A.9 Function Prototypes
This section contains the prototypes (or calling conventions) used by the functions declared in the file.
The order in which functions are prototyped should be the order in which the functions are declared in
the file.  This order allows you to quickly locate the position of a function when the file is printed. 

Also note that the static keyword, the returned data type, and the function names are all aligned.

A.10 Function Declarations
As much as possible, there should only be one function per page when code listings are printed on a
printer.  A comment block should precede each function.  All comment blocks should look as shown
below.  A description of the function should be given and include as much information as necessary.  If
the combination of the comment block and the source code extends past a printed page, a page break
should be forced (preferably between the end of the comment block and the start of the function).  This
break allows the function to be on a page by itself and prevents having a page break in the middle of the
function.  If the function itself is longer than a printed page, then it should be broken by a page break
comment (/*$PAGE*/) in a logical location (i.e., at the end of an if statement, instead of in the middle
of one).

More than one small function can be declared on a single page.  They should all, however, contain
the comment block describing the function. The beginning of a function should start at least two lines
after the end of the previous function.

/*

************************************************************************************************

*                                        FUNCTION PROTOTYPES

************************************************************************************************

*/

        void      KeyClrBuf(void);

static  BOOLEAN   KeyChkStat(void);

static  INT16S    KeyGetCnt(int ch);

/*$PAGE*/

/*

************************************************************************************************

*                                     CLEAR KEYBOARD BUFFER

*

* Description : Flush keyboard buffer

* Arguments   : none

* Returns     : none

* Notes       : none

************************************************************************************************

*/
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Functions that are only used within the file should be declared static to hide them from other func-
tions in different files.

By convention, I always call all invocations of the function without a space between the function
name and the open parenthesis of the argument list.  Because of this, I place a space between the name
of the function and the opening parenthesis of the argument list in the function declaration, as shown
above.  This way I can quickly find the function definition using a grep utility. 

Function names should make use of the file name as a prefix.  This prefix makes it easy to locate
function declarations in medium to large projects.  It also makes it very easy to know where these func-
tions are declared. For example, all functions in a file named KEY.C and functions in a file named
VIDEO.C could be declared as follows

It’s not necessary to use the whole file/module name as a prefix.  For example, a file called
KEYBOARD.C could have functions starting with Key instead of Keyboard.  It is also preferable to use
uppercase characters to separate words in a function name instead of using underscores.  Again,
underscores don’t add meaning to names, and they use up character spaces.  As mentioned previously,
formal parameters and local variables should be in lowercase, which makes it clear that such variables
have a scope limited to the function.

Each local variable name must be declared on its own line, which allows the programmer to com-
ment each one as needed.  Local variables are indented four spaces.  The statements for the function are
separated from the local variables by three spaces.  Declarations of local variables should be physically
separated from the statements because they are different.

A.11 Indentation
Indentation is important to show the flow of the function.  The question is, how many spaces are needed
for indentation?  One space is obviously not enough, while eight spaces is too much.  The compromise I
use is four spaces.  I also never use tabs, because various printers interpret tabs differently; your code

void KeyClrBuf (void)

{

}

/*$PAGE*/

KEY.C

          KeyGetChar()

          KeyGetLine()

          KeyGetFnctKey()

VIDEO.C

          VideoGetAttr()

          VideoPutChar()

          VideoPutStr()

          VideoSetAttr()
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might not look as you want.  Avoiding tabs does not mean that you can’t use the Tab key on your key-
board.  A good editor gives you the option to replace tabs with spaces (in this case, 4 spaces).

A space follows the keywords if, for, while, and do.  The keyword else has the privilege of hav-
ing one before and one after it if curly braces are used.  I write if (condition) on its own line and the
statement(s) to execute on the next following line(s) as follows

instead of the following method

There are two reasons for this method.  The first is that I like to keep the decision portion separate
from the execution statement(s).  The second reason is consistency with the method I use for while,
for, and do statements.

switch statements are treated as any other conditional statement.  Note that the case statements are
lined up with the case label.  The important point here is that switch statements must be easy to follow.
cases should also be separated from one another.               

if (x < 0)

    z = 25;

if (y > 2) {

    z = 10; 

    x = 100; 

    p++;

}

if (x < 0) z = 25;

if (y > 2) {z = 10; x = 100; p++;}

if (x > 0) {

    y = 10;

    z =  5;

}

if (z < LIM) {

    x = y + z;

    z = 10;

} else {

    x = y - z;

    z = -25;

}
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for (i = 0; i < MAX_ITER; i++) {

    *p2++ = *p1++;

    xx[i] = 0;

}

while (*p1) {

    *p2++ = *p1++;

    cnt++;        

}

do {

    cnt--;

    *p2++ = *p1++;

} while (cnt > 0);

switch (key) {

    case KEY_BS :

         if (cnt > 0) {

             p--;

             cnt--;

         }

         break;

    case KEY_CR :

         *p = NUL;

         break;

    case KEY_LINE_FEED :

         p++;

         break;

    default:

         *p++ = key;

         cnt++;

         break;

}
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A.12 Statements and Expressions
All statements and expressions should be made to fit on a single source line.  I never use more than one
assignment per line, such as

Even though this version is correct in C, when the variable names get more complicated, the intent
might not be as obvious. 

The following operators are written with no space around them:

Parentheses after function names have no space(s) before them.  A space should be introduced after
each comma to separate each actual argument in a function.  Expressions within parentheses are written
with no space after the opening parenthesis and no space before the closing parenthesis.  Commas and
semicolons should have one space after them.

The unary operators are written with no space between them and their operands:

The binary operators are preceded and followed by one or more spaces, as is the ternary operator:

The keywords if, while, for, switch, and return are followed by one space.
For assignments, numbers are lined up in columns, as if you were to add them. The equal signs are

also lined up. 

x = y = z = 1;

-> Structure-pointer operator p->m

. Structure-member operator s.m

[] Array subscripting a[i]

strncat(t, s, n);

for (i = 0; i < n; i++)

!p    ~b    ++i    --j    (long)m    *p    &x    sizeof(k)

c1 = c2      x + y      i += 2      n > 0 ? n : -n;

x        = 100.567;

temp     =  12.700;

var5     =   0.768;

variable =  12;

storage  = &array[0];
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A.13 Structures and Unions
Structures are typedef, where allows a single name to represent the structure.  The structure type is
declared using all uppercase characters with underscore characters used to separate words.

Structure members start with the same prefix (as shown in the examples above).  Member names
should start with the name of the structure type (or a portion of it), which makes it clear when pointers
are used to reference members of a structure, such as
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typedef struct line {         /* Structure that defines a LINE                 */

    int  LineStartX;          /* 'X' & 'Y' starting coordinate                 */

    int  LineStartY;    

    int  LineEndX;            /* 'X' & 'Y' ending   coordinate                 */

    int  LineEndY;      

    int  LineColor;           /* Color of line to draw                         */

} LINE;

typedef struct point {        /* Structure that defines a POINT                */

    int  PointPosX;           /* 'X' & 'Y' coordinate of point                 */

    int  PointPosY;

    int  PointColor;          /* Color of point                                */

} POINT;

p->LineColor;   /* We know that 'p' is a pointer to LINE */
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Appendix B

Licensing Policy for µC/OS-II
Even though µC/OS-II is provided in source form, µC/OS-II is not freeware nor is it Open Source software.

B.1 Colleges and Universities
µC/OS-II source and object code can be freely distributed (to students) by accredited colleges and uni-
versities without requiring a license, as long as no commercial application is involved. In other words,
no licensing is required if µC/OS-II is used for educational use. Colleges and universities should register
their courses by sending a class syllabus and providing a Web link so the class can be added to the
Micriµm Web site. Please send this information to:

Universities@Micrium.com

B.2 Commercial Use
You must obtain an Object Code Distribution License to embed µC/OS-II in a commercial product. This
is a license to put µC/OS-II in a product that is sold with the intent to make a profit. A license fee is
required for such situations, and you need to contact Micriµm, Inc., (see below) for pricing.

You must obtain a Source Code Distribution License to distribute µC/OS-II source code. Again,
there is a fee for such a license, and you need to contact Micriµm, Inc., for pricing.

Licensing@Micrium.com

or

Micrium, Inc.
949 Crestview Circle
Weston, FL 33327-1848
U.S.A.
1-954-217-2036 (Phone)
1-954-217-2037 (Fax)
http://www.Micrium.com
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Appendix C

µC/OS-II Quick Reference
This appendix provides a summary of the services provided by µC/OS-II, assuming that you enabled
everything (I didn’t want to clutter this reference with conditional compilation statements). Of course,
some of the services might not be included in your application, depending on the contents of OS_CFG.H.

The services are listed in the same order as they appear in the chapters:

• Miscellaneous (Kernel Structure)

• Task Management

• Time Management

• Semaphore Management

• Mutual Exclusion Semaphore Management

• Event Flag Management

• Message Mailbox Management

• Message Queue Management

• Memory Management

I also included a Task Assignment Worksheet, which allows you to plan your application by listing
your application tasks.
569
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Miscellaneous
(Chapter 3)

Function Prototypes

Macros

Global Variables

void          OSInit(void);

void          OSIntEnter(void);

void          OSIntExit(void);

void          OSSchedLock(void);

void          OSSchedUnlock(void);

void          OSStart(void);

void          OSStatInit(void);

INT16U        OSVersion(void);

OS_ENTER_CRITICAL()

OS_EXIT_CRITICAL()

INT8S     OSCPUUsage                 // CPU usage in percent (%)

INT8U     OSIntNesting               // Interrupt nesting level (0..255)

INT8U     OSLockNesting              // OSSchedLock() nesting level.

BOOLEAN   OSRunning                  // Flag indicating multitasking running

INT8U     OSTaskCtr                  // Number of tasks created

OS_TCB   *OSTCBCur                   // Pointer to current task’s TCB

OS_TCB   *OSTCBHighRdy               // Pointer to highest priority task’s TCB

INT8U     OSTaskCtr                  // Number of tasks created
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Task Management

(Chapter 4)

Function Prototypes

OSTaskCreateExt() opt Argument

OSTaskDelReq() Return Values

INT8U         OSTaskChangePrio(INT8U oldprio, INT8U newprio);

INT8U         OSTaskCreate(void   (*task)(void *pd), 
                           void    *pdata,
                           OS_STK  *ptos,
                           INT8U    prio);

INT8U         OSTaskCreateExt(void  (*task)(void *pd),
                              void   *pdata,
                              OS_STK *ptos,
                              INT8U   prio,
                              INT16U  id,
                              OS_STK *pbos,
                              INT32U  stk_size,
                              void   *pext,
                              INT16U  opt);

INT8U         OSTaskDel(INT8U prio);

INT8U         OSTaskDelReq(INT8U prio);

INT8U         OSTaskResume(INT8U prio);

INT8U         OSTaskSuspend(INT8U prio);

INT8U         OSTaskStkChk(INT8U prio, OS_STK_DATA *pdata);

INT8U         OSTaskQuery(INT8U prio, OS_TCB *pdata);

OS_TASK_OPT_STK_CHK          // Enable stack checking for the task               

OS_TASK_OPT_STK_CLR          // Clear the stack when the task is create          

OS_TASK_OPT_SAVE_FP          // Save Floating-Point registers

OS_NO_ERR                    // The request has been registered

OS_TASK_NOT_EXIST            // The task has been deleted

OS_TASK_DEL_IDLE             // Can’t delete the Idle task!

OS_PRIO_INVALID              // Invalid priority



572 Appendix C: µC/OS-II Quick Reference
OSTaskStkChk() Data Structure

OSTaskQuery() Data Structure

typedef struct {

    INT32U  OSFree;          // # of free bytes on the stack

    INT32U  OSUsed;          // # of bytes used on the stack

} OS_STK_DATA;

typedef struct os_tcb {

    OS_STK        *OSTCBStkPtr;        // Stack Pointer

    void          *OSTCBExtPtr;        // TCB extension pointer

    OS_STK        *OSTCBStkBottom;     // Ptr to bottom of stack

    INT32U         OSTCBStkSize;       // Size of task stack (#elements)

    INT16U         OSTCBOpt;           // Task options 

    INT16U         OSTCBId;            // Task ID (0..65535)

    struct os_tcb *OSTCBNext;          // Pointer to next     TCB 

    struct os_tcb *OSTCBPrev;          // Pointer to previous TCB 

    OS_EVENT      *OSTCBEventPtr;      // Pointer to ECB

    void          *OSTCBMsg;           // Message received 

    OS_FLAG_NODE  *OSTCBFlagNode;      // Pointer to event flag node

    OS_FLAGS       OSTCBFlagsRdy;      // Event flags that made task ready

    INT16U         OSTCBDly;           // Nbr ticks to delay task or, timeout

    INT8U          OSTCBStat;          // Task status

    INT8U          OSTCBPrio;          // Task priority (0 == highest) 

    INT8U          OSTCBX;

    INT8U          OSTCBY;

    INT8U          OSTCBBitX;

    INT8U          OSTCBBitY;

    BOOLEAN        OSTCBDelReq;        // Flag to tell task to delete itself

} OS_TCB;
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Time Management

(Chapter 5)

Function Prototypes

void          OSTimeDly(INT16U ticks);

INT8U         OSTimeDlyHMSM(INT8U  hours, 

                            INT8U  minutes, 

                            INT8U  seconds, 

                            INT16U milli);

INT8U         OSTimeDlyResume(INT8U prio);

INT32U        OSTimeGet(void);

void          OSTimeSet(INT32U ticks);

void          OSTimeTick(void);
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Semaphore Management

(Chapter 7)

Function Prototypes

OSSemDel() opt Argument

OSSemQuery()Data Structure

INT16U        OSSemAccept(OS_EVENT *pevent);

OS_EVENT     *OSSemCreate(INT16U cnt);

OS_EVENT     *OSSemDel(OS_EVENT *pevent, INT8U opt, INT8U *err);

void          OSSemPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);

INT8U         OSSemPost(OS_EVENT *pevent);

INT8U         OSSemQuery(OS_EVENT *pevent, OS_SEM_DATA *pdata);

OS_DEL_NO_PEND                              // Delete only if no task pending

OS_DEL_ALWAYS                               // Always delete

typedef struct {

    INT16U  OSCnt;                          // Semaphore count

    INT8U   OSEventTbl[OS_EVENT_TBL_SIZE];  // Wait list

    INT8U   OSEventGrp;

} OS_SEM_DATA;

Task

ISR

Task
OSSemAccept()
OSSemPend()
OSSemQuery()

OSSemCreate()
OSSemDel()
OSSemPost()

OSSemPost()

OR

N N
ISROSSemAccept()
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Mutual Exclusion Semaphore Management

(Chapter 8)

Function Prototypes

OSMutexDel() opt Argument

OSMutexQuery() Data Structure

INT8U         OSMutexAccept(OS_EVENT *pevent, INT8U *err);

OS_EVENT     *OSMutexCreate(INT8U prio, INT8U *err);

OS_EVENT     *OSMutexDel(OS_EVENT *pevent, INT8U opt, INT8U *err);

void          OSMutexPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);

INT8U         OSMutexPost(OS_EVENT *pevent);

INT8U         OSMutexQuery(OS_EVENT *pevent, OS_MUTEX_DATA *pdata);

OS_DEL_NO_PEND                             // Delete only if no task pending

OS_DEL_ALWAYS                              // Always delete

typedef struct {

    INT8U   OSEventTbl[OS_EVENT_TBL_SIZE]; // Wait List

    INT8U   OSEventGrp;                     

    INT8U   OSValue;                       // Mutex value 

                                           //      (0=used, 1=available)

    INT8U   OSOwnerPrio;                   // Mutex owner's task priority 

    INT8U   OSMutexPIP;                    // Priority Inheritance Priority or

                                           //      0xFF if no owner   

} OS_MUTEX_DATA;

Task Task

OSMutexPend()
OSMutexAccept()
OSMutexQuery()

OSMutexCreate()
OSMutexDel()
OSMutexPost()
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Event Flag Management

(Chapter 9)

Function Prototypes

OSFlagDel() opt Argument

OS_FLAGS      OSFlagAccept(OS_FLAG_GRP *pgrp, 

                           OS_FLAGS     flags, 

                           INT8U        wait_type, 

                           INT8U       *err);

OS_FLAG_GRP  *OSFlagCreate(OS_FLAGS     flags, 

                           INT8U       *err);

OS_FLAG_GRP  *OSFlagDel(OS_FLAG_GRP    *pgrp, 

                        INT8U           opt, 

                        INT8U          *err);

OS_FLAGS      OSFlagPend(OS_FLAG_GRP   *pgrp, 

                         OS_FLAGS       flags, 

                         INT8U          wait_type, 

                         INT16U         timeout, 

                         INT8U         *err);

OS_FLAGS      OSFlagPost(OS_FLAG_GRP   *pgrp, 

                         OS_FLAGS       flags, 

                         INT8U          operation, 

                         INT8U         *err);

OS_FLAGS      OSFlagQuery(OS_FLAG_GRP  *pgrp, 

                          INT8U        *err);

OS_DEL_NO_PEND                             // Delete only if no task pending

OS_DEL_ALWAYS                              // Always delete

OSFlagAccept()
OSFlagPend()
OSFlagQuery()TaskTask

ISR

Task

ISROSFlagAccept()
OSFlagQuery()

OSFlagCreate()
OSFlagDel()
OSFlagPost()

OSFlagPost()

Event Flag Group
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Message Mailbox Management

(Chapter 10)

Function Prototypes

OSMboxDel() opt Argument

OSMboxPostOpt() opt Argument

void         *OSMboxAccept(OS_EVENT *pevent);

OS_EVENT     *OSMboxCreate(void *msg);

OS_EVENT     *OSMboxDel(OS_EVENT *pevent, INT8U opt, INT8U *err);

void         *OSMboxPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);

INT8U         OSMboxPost(OS_EVENT *pevent, void *msg);

INT8U         OSMboxPostOpt(OS_EVENT *pevent, void *msg, INT8U opt);

INT8U         OSMboxQuery(OS_EVENT *pevent, OS_MBOX_DATA *pdata);

OS_DEL_NO_PEND                             // Delete only if no task pending

OS_DEL_ALWAYS                              // Always delete

OS_POST_OPT_NONE                           // POST to a single waiting task 

                                           //    (Identical to OSMboxPost())

OS_POST_OPT_BROADCAST                      // POST to ALL waiting on mailbox

Task

ISR

Task

OSMboxAccept()
OSMboxPend()
OSMboxQuery()

OSMboxCreate()
OSMboxDel()
OSMboxPost()
OSMboxPostOpt()

OSMboxPost()
OSMboxPostOpt()

Mailbox

Message

ISR

OSMboxAccept()
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OSMboxQuery() Data Structure

typedef struct {

    void   *OSMsg;                         // Pointer to message in mailbox

    INT8U   OSEventTbl[OS_EVENT_TBL_SIZE]; // Waiting List

    INT8U   OSEventGrp;

} OS_MBOX_DATA;
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Message Queue Management

(Chapter 11)

Function Prototypes

OSQDel() opt Argument

void         *OSQAccept(OS_EVENT *pevent);

OS_EVENT     *OSQCreate(void **start, INT16U size);

OS_EVENT     *OSQDel(OS_EVENT *pevent, INT8U opt, INT8U *err);

INT8U         OSQFlush(OS_EVENT *pevent);

void         *OSQPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);

INT8U         OSQPost(OS_EVENT *pevent, void *msg);

INT8U         OSQPostFront(OS_EVENT *pevent, void *msg);

INT8U         OSQPostOpt(OS_EVENT *pevent, void *msg, INT8U opt);

INT8U         OSQQuery(OS_EVENT *pevent, OS_Q_DATA *pdata);

OS_DEL_NO_PEND                             // Delete only if no task pending

OS_DEL_ALWAYS                              // Always delete

OS_POST_OPT_FRONT                          // Simulate OSQPostFront()

Task

ISR

Task
OSQAccept()
OSQPend()
OSQQuery()

OSQCreate()
OSQDel()
OSQFlush()
OSQPost()
OSQPostFront()
OSQPostOpt()

OSQFlush()
OSQPost()
OSQPostFront()
OSQPostOpt()

Queue

Message

N

ISR

OSQAccept()
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OSQPostOpt() opt Argument

OSQQuery() Data Structure

OS_POST_OPT_NONE                           // POST to a single waiting task 

                                           //    (Identical to OSMboxPost())

OS_POST_OPT_BROADCAST                      // POST to ALL waiting on mailbox

typedef struct {

    void          *OSMsg;                          // Pointer to next message 

    INT16U         OSNMsgs;                        // # messages in queue

    INT16U         OSQSize;                        // Size of message queue

    INT8U          OSEventTbl[OS_EVENT_TBL_SIZE];  // Waiting List

    INT8U          OSEventGrp;

} OS_Q_DATA;
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Memory Management

(Chapter 12)

Function Prototypes

OSMemQuery() Data Structure

OS_MEM       *OSMemCreate(void   *addr, 

                          INT32U  nblks, 

                          INT32U  blksize, 

                          INT8U  *err);

void         *OSMemGet(OS_MEM *pmem, INT8U *err);

INT8U         OSMemPut(OS_MEM *pmem, void *pblk);

INT8U         OSMemQuery(OS_MEM *pmem, OS_MEM_DATA *pdata);

typedef struct {

    void   *OSAddr;              // Ptr to start of memory partition

    void   *OSFreeList;          // Ptr to start free list of memory blocks

    INT32U  OSBlkSize;           // Size (in bytes) of each memory block

    INT32U  OSNBlks;             // # blocks in the Partition

    INT32U  OSNFree;             // # free blocks

    INT32U  OSNUsed;             // # blocks used

} OS_MEM_DATA;
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Priority Task Name Stack Size
(Bytes) Description Mutex PIP?

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63 µC/OS-II Idle Task N/A

µC/OS-II, The Real-Time Kernel
Task Assignment Worksheet
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Appendix D

TO Utility
TO is a DOS utility that allows you to go to a directory without typing

CD path

or

CD ..\path

TO is probably the DOS utility I use most because it allows me to move between directories very
quickly. At the DOS prompt, simply type TO followed by the name you associated with a directory, then
press the Enter key

TO name

where name is a name you associated with a path. The names and paths are placed in an ASCII file
called TO.TBL, which resides in the root directory of the current drive. TO scans TO.TBL for the name
you specified on the command line. If the name exists in TO.TBL, the directory is changed to the path
specified with the name. If the name is not found in TO.TBL, the message Invalid NAME. is displayed.

The DOS executable is in \SOFTWARE\TO\EXE\TO.EXE, an example of the names and paths is in
\SOFTWARE\TO\EXE\TO.TBL, and the source code is in \SOFTWARE\TO\SOURCE\TO.C.

An example of TO.TBL and its format is shown in Listing D.1. Note that the name must be separated
from the path by a comma.

Listing D.1 Example of TO.TBL. 
A,          ..\SOURCE

C,          ..\SOURCE

D,          ..\DOC

L,          ..\LST

O,          ..\OBJ

P,          ..\PROD

W,          ..\WORK
583
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You can add an entry to TO.TBL by typing the path associated with a name on the command line, as
follows

TO name path

TO appends this new entry to the end of TO.TBL, which avoids having to use a text editor to add a new
entry. If you type

TO EX1L

TO changes the directory to \SOFTWARE\uCOS-II\EX1_x86L\BC45\TEST [LD.1(1)]. 

TO.TBL can be as long as needed, but each name must be unique. Note that two names can be associ-
ated with the same directory. If you add entries in TO.TBL using a text editor, all entries must be entered
in uppercase. When you invoke TO at the DOS prompt, the name you specify is converted to uppercase
before the program searches through the table. TO searches TO.TBL linearly from the first entry to the
last. For faster response, you might want to place your most frequently used directories at the beginning
of the file, although this action might not be necessary with today’s fast computers.

EX1L,       \SOFTWARE\uCOS-II\EX1_x86L\BC45\TEST                             (1)

EX2L,       \SOFTWARE\uCOS-II\EX2_x86L\BC45\TEST

EX3L,       \SOFTWARE\uCOS-II\EX3_x86L\BC45\TEST

Ix86L,      \SOFTWARE\uCOS-II\Ix86L\BC45

TO,         \SOFTWARE\TO\SOURCE

uCOS-II,    \SOFTWARE\uCOS-II\SOURCE

Listing D.1 Example of TO.TBL. (Continued)
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Companion CD
This book includes a companion CD and contains a self-extracting executable called uCOSV252.EXE.
Because so much room is left on the CD, I decided to also include all the files so that you can browse the
CD without having to install anything on your computer.

It is assumed that you have a Microsoft Windows 95, 98, NT, 2000, or XP computer system, running
on an 80x86, and Pentium-class, or AMD, processor. You should have at least 10MB of free disk space
to install µC/OS-II and its source files on your system.

Insert the companion CD into your CD-ROM drive, and execute the file uCOSV252.EXE, which
should be found on the root directory of the CD. The splash screen, shown in Figure F.1, is displayed in
the center of your screen.

Figure F.1 uCOSV252.EXE splash screen.

When you click OK, uCOSV252.EXE displays the screen shown in Figure F.2. Here you are asked to
specify the folder (i.e., directory) where you want to install all the files for µC/OS-II. The default is to
place the source tree on to your C:\ drive. You can specify other locations.

After making your selection (or if you accept the default location), press the Unzip button. After the
file is unzipped, the message shown in Figure F.3 is displayed.
587
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Figure F.2 Specify which folder. 

Figure F.3 Files unzipped message.

Press the OK button. Microsoft Notepad opens and shows you the contents of the README.TXT file,
as shown in Figure F.4. From the File menu, choose close when you are done reading this file.

Figure F.4 README.TXT.
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F.1 Files and Directories
After the files are installed, your destination hard disk should contain the directories (folders) shown
below. In fact, the CD also contains these folders and files.

\SOFTWARE — The main directory from the root where all µC/OS-II-related files are placed.

\SOFTWARE\TO — This directory contains the files for the TO utility (see Appendix D). The source file is
TO.C, found in the \SOFTWARE\TO\SOURCE directory. The DOS executable file (TO.EXE) is in
the \SOFTWARE\TO\EXE directory. Note that TO requires a file called TO.TBL, which must
reside on your root directory. An example of TO.TBL is also found in the \SOFTWARE\TO\EXE
directory. You need to move TO.TBL to the root directory to use TO.EXE.

\SOFTWARE\BLOCKS — The main directory where all building blocks are located. With µC/OS-II, I
include a building block that handles PC-related functions used by the example code. The
source files are PC.C and PC.H, found in the \SOFTWARE\BLOCKS\PC\BC45 directory.

\SOFTWARE\uCOS-II — The main directory where all µC/OS-II files are located.

\SOFTWARE\uCOS-II\DOC — This directory contains documentation files. Specifically, you will find:

README.TXT — This file is the README file for this release. When you first install µC/OS-II, you
should see the contents of this file.

RevV252.PDF — This file contains the release notes for this release. You will need Adobe Acrobat
Reader to view this file. 

NewV252.PDF — This file contains the list of changes to µC/OS-II since the initial release of
µC/OS-II (i.e., v2.00). Again, you will need to use Adobe Acrobat Reader.

QuickRefChartV252-Color.PDF — This file contains a quick reference chart for all the services
provided by µC/OS-II. Again, you need to use Adobe Acrobat Reader. After the docu-
ment is printed, you can either laminate it full size or fold the page in half and have a
more compact reference chart. 

TaskAssignmentWorksheet.PDF

TaskAssignmentWorksheet.XLS — These files allow you to list and organize your tasks. Again,
you need to use Adobe Acrobat Reader. The .XLS file is a Microsoft Excel spreadsheet
and can be used to create documentation for your application.

\SOFTWARE\uCOS-II\EX1_x86L\BC45 — This directory contains the source code for Example #1 (see
Chapter 1), which is intended to run under DOS (or a DOS window under Microsoft Win-
dows). The BC45 directory means that these files assume you have the Borland C/C++ com-
piler v4.5x. Of course, you could modify these files to use a different compiler if needed. You
should find additional sub-directories under the BC45 directory. Each of the following direc-
tories contains four files as described below.

\SOURCE — INCLUDES.H — This file is the master include file used by µC/OS-II and the test code.

OS_CFG.H — This file is the µC/OS-II configuration file, which specifies which services you
want to enable, how many tasks your application can have, and more.
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TEST.C — This file is the test code for Example #1. 

TEST.LNK — This file is the Turbo Assembler linker-command file and specifies which object
files and libraries are used to make the final executable, TEST.EXE.

\TEST — MAKETEST.BAT is a DOS batch file that you need to execute to build the code for Exam-
ple #1. MAKETEST.BAT assumes that you have the Borland MAKE utility present on your C:
drive and in the C:\BC45\BIN directory. If your compiler is located in a different directory,
you need to edit MAKETEST.BAT accordingly.

TEST.MAK — This file is a makefile that allows you to build the DOS executable TEST.EXE.
TEST.MAK contains all the compiler, assembler, and linker commands to build TEST.EXE.

TEST.EXE — This file is the DOS executable for Example #1 that I built using my tools. You
can execute this file in a DOS window under Microsoft Windows 95, 98, ME, NT, 2000, or
XP.

TEST.MAP — This file is the linker MAP file.

\SOFTWARE\uCOS-II\EX2_x86L\BC45 — This directory contains the source code for Example #2 (see
Chapter 1), which is intended to run under DOS (or a DOS window under Microsoft Win-
dows). This directory is laid out exactly the same as EX1_x86L described previously. In other
words, it contains files with identical names except that their contents are different.

\SOFTWARE\uCOS-II\EX3_x86L\BC45 — This directory contains the source code for Example #3 (see
Chapter 1), which is intended to run under DOS (or a DOS window under Microsoft Win-
dows). This directory is laid out exactly the same as EX1_x86L described previously. In other
words, it contains files with identical names except that their contents are different.

\SOFTWARE\uCOS-II\EX4_x86L.FP\BC45 — This directory contains the source code for Example #4
(see Chapter 1), which is intended to run under DOS (or a DOS window under Microsoft
Windows). This directory is laid out exactly the same as EX1_x86L described previously. In
other words, it contains files with identical names except that their contents are different.

\SOFTWARE\uCOS-II\Ix86L\BC45 — This directory contains the source code for the processor-depen-
dent code (also known as the port) of µC/OS-II for an 80x86 processor running in real-mode
and compiled for the large model using the Borland C/C++ v4.5x compiler. This port also
contains code to allow you to reentrantly use the floating-point emulation library provided
with the Borland tools.

OS_CPU_A.ASM — This file contains the assembly language functions for the port. Specifically, this
file contains OSStartHighRdy(), OSCtxSw(), OSIntCtxSw(), and OSTickISR().

OS_CPU_C.C — This file contains the C functions for the port.

OS_CPU.H — This file contains the C header for the port.

\SOFTWARE\uCOS-II\Ix86L-FP\BC45 — This directory contains the source code for the proces-
sor-dependent code (also known as the port) of µC/OS-II for an 80x86 processor running in
real-mode and compiled for the large model using the Borland C/C++ v4.5x compiler. This
port also makes use of the 80x86 processors that are equipped with a floating-point unit
(FPU). In other words, tasks are able to use the FPU, and µC/OS-II saves the FPU registers
during a context switch.
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OS_CPU_A.ASM — This file contains the assembly language functions for the port. Specifically, this
file contains OSStartHighRdy(), OSCtxSw(), OSIntCtxSw(), and OSTickISR().

OS_CPU_C.C — This file contains the C functions for the port.

OS_CPU.H — This file contains the C header for the port.

\SOFTWARE\uCOS-II\SOURCE — This directory contains the source code for the processor-independent
portion of µC/OS-II. This code is fully portable to other processor architectures. This direc-
tory contains the following files:

OS_CORE.C OS_FLAG.C

OS_MBOX.C OS_MEM.C

OS_MUTEX.C OS_Q.C

OS_SEM.C OS_TASK.C

OS_TIME.C uCOS_II.C

uCOS_II.H
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	1
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	1
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	196
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	0
	0
	Table 14.5 80x86 data sizes.
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	µC/OS-II Reference Manual
	OS_ENTER_CRITICAL()
	OS_EXIT_CRITICAL()
	3
	OS_CPU.H
	Task or ISR
	N/A
	1. These macros must be used in pairs.
	2. If OS_CRITICAL_METHOD is set to 3, your code is assumed to have allocated local storage for a ...



	OSFlagAccept()
	9
	OS_FLAG.C
	Task

	OS_FLAG_EN && OS_FLAG_ACCEPT_EN
	1. The event flag group must be created before it is used.
	2. This function does not block if the desired flags are not present.


	OSFlagCreate()
	9
	OS_FLAG.C
	Task or startup code

	OS_FLAG_EN
	1. Event flag groups must be created by this function before they can be used by the other services.


	OSFlagDel()
	9
	OS_FLAG.C
	Task
	OS_FLAG_EN and OS_FLAG_DEL_EN
	1. You should use this call with care because other tasks might expect the presence of the event ...
	2. This call can potentially disable interrupts for a long time. The interrupt-disable time is di...



	OSFlagPend()
	9
	OS_FLAG.C
	Task only

	OS_FLAG_EN
	1. The event flag group must be created before it’s used.


	OSFlagPost()
	9
	OS_FLAG.C
	Task or ISR

	OS_FLAG_EN
	1. Event flag groups must be created before they are used.
	2. The execution time of this function depends on the number of tasks waiting on the event flag g...
	3. The amount of time interrupts are disabled also depends on the number of tasks waiting on the ...


	OSFlagQuery()
	9
	OS_FLAG.C
	Task or ISR

	OS_FLAG_EN && OS_FLAG_QUERY_EN
	1. The event flag group to query must be created.
	2. You can call this function from an ISR.


	OSInit()
	3
	OS_CORE.C
	Startup code only
	N/A
	1. OSInit() must be called before OSStart().



	OSIntEnter()
	3
	OS_CORE.C
	ISR only
	N/A
	1. This function must not be called by task-level code.
	2. You can increment the interrupt-nesting counter (OSIntNesting) directly in your ISR to avoid t...
	3. You are allowed to nest interrupts up to 255 levels deep.



	OSIntExit()
	3
	OS_CORE.C
	ISR only
	N/A
	1. This function must not be called by task-level code. Also, if you decided to increment OSIntNe...



	OSMboxAccept()
	10
	OS_MBOX.C
	Task or ISR

	OS_MBOX_EN && OS_MBOX_ACCEPT_EN
	1. Mailboxes must be created before they are used.


	OSMboxCreate()
	10
	OS_MBOX.C
	Task or startup code

	OS_MBOX_EN
	1. Mailboxes must be created before they are used.


	OSMboxDel()
	10
	OS_MBOX.C
	Task
	OS_MBOX_EN and OS_MBOX_DEL_EN
	1. You should use this call with care because other tasks might expect the presence of the mailbox.
	2. Interrupts are disabled when pended tasks are readied, which means that interrupt latency depe...
	3. OSMboxAccept() callers do not know that the mailbox has been deleted.



	OSMboxPend()
	10
	OS_MBOX.C
	Task only

	OS_MBOX_EN
	1. Mailboxes must be created before they are used.
	2. You should not call OSMboxPend() from an ISR.


	OSMboxPost()
	10
	OS_MBOX.C
	Task or ISR

	OS_MBOX_EN && OS_MBOX_POST_EN
	1. Mailboxes must be created before they are used.
	2. You must never post a NULL pointer because this pointer indicates that the mailbox is empty.


	OSMboxPostOpt()
	10
	OS_MBOX.C
	Task or ISR
	OS_MBOX_EN and OS_MBOX_POST_OPT_EN
	1. Mailboxes must be created before they are used.
	2. You must never post a NULL pointer to a mailbox because this pointer indicates that the mailbo...
	3. If you need to use this function and want to reduce code space, you can disable code generatio...
	4. The execution time of OSMboxPostOpt() depends on the number of tasks waiting on the mailbox if...



	OSMboxQuery()
	10
	OS_MBOX.C
	Task or ISR

	OS_MBOX_EN && OS_MBOX_QUERY_EN
	1. Message mailboxes must be created before they are used.


	OSMemCreate()
	12
	OS_MEM.C
	Task or startup code

	OS_MEM_EN
	1. Memory partitions must be created before they are used.


	OSMemGet()
	12
	OS_MEM.C
	Task or ISR

	OS_MEM_EN
	1. Memory partitions must be created before they are used.


	OSMemPut()
	12
	OS_MEM.C
	Task or ISR

	OS_MEM_EN
	1. Memory partitions must be created before they are used.
	2. You must return a memory block to the proper memory partition.


	OSMemQuery()
	12
	OS_MEM.C
	Task or ISR

	OS_MEM_EN && OS_MEM_QUERY_EN
	1. Memory partitions must be created before they are used.


	OSMutexAccept()
	8
	OS_MUTEX.C
	Task

	OS_MUTEX_EN
	1. Mutexes must be created before they are used.
	2. This function must not be called by an ISR.
	3. If you acquire the mutex through OSMutexAccept(), you must call OSMutexPost() to release the m...


	OSMutexCreate()
	8
	OS_MUTEX.C
	Task or startup code

	OS_MUTEX_EN
	1. Mutexes must be created before they are used.
	2. You must make sure that prio has a higher priority than any of the tasks that use the mutex to...


	OSMutexDel()
	8
	OS_MUTEX.C
	Task
	OS_MUTEX_EN and OS_MUTEX_DEL_EN
	1. You should use this call with care because other tasks might expect the presence of the mutex.



	OSMutexPend()
	8
	OS_MUTEX.C
	Task only

	OS_MUTEX_EN
	1. Mutexes must be created before they are used.
	2. You should not suspend the task that owns the mutex, have the mutex owner wait on any other µC...


	OSMutexPost()
	8
	OS_MUTEX.C
	Task

	OS_MUTEX_EN
	1. Mutexes must be created before they are used.
	2. You cannot call this function from an ISR.


	OSMutexQuery()
	8
	OS_MUTEX.C
	Task

	OS_MUTEX_EN && OS_MUTEX_QUERY_EN
	1. Mutexes must be created before they are used.
	2. You cannot call this function from an ISR.


	OSQAccept()
	11
	OS_Q.C
	Task or ISR

	OS_Q_EN
	1. Message queues must be created before they are used.


	OSQCreate()
	11
	OS_Q.C
	Task or startup code

	OS_Q_EN
	1. Queues must be created before they are used.


	OSQDel()
	11
	OS_Q.C
	Task
	OS_Q_EN and OS_Q_DEL_EN
	1. You should use this call with care because other tasks might expect the presence of the queue.
	2. Interrupts are disabled when pended tasks are readied, which means that interrupt latency depe...



	OSQFlush()
	11
	OS_Q.C
	Task or ISR

	OS_Q_EN && OS_Q_FLUSH_EN
	1. Queues must be created before they are used.


	OSQPend()
	11
	OS_Q.C
	Task only

	OS_Q_EN
	1. Queues must be created before they are used.
	2. You should not call OSQPend() from an ISR.


	OSQPost()
	11
	OS_Q.C
	Task or ISR

	OS_Q_EN && OS_Q_POST_EN
	1. Queues must be created before they are used.
	2. You must never post a NULL pointer.


	OSQPostFront()
	11
	OS_Q.C
	Task or ISR

	OS_Q_EN && OS_Q_POST_FRONT_EN
	1. Queues must be created before they are used.
	2. You must never post a NULL pointer.


	OSQPostOpt()
	11
	OS_Q.C
	Task or ISR

	OS_Q_EN && OS_Q_POST_OPT_EN
	1. Queues must be created before they are used.
	2. You must never post a NULL pointer to a queue.
	3. If you need to use this function and want to reduce code space, you can disable code generatio...
	4. The execution time of OSQPostOpt() depends on the number of tasks waiting on the queue if you ...


	OSQQuery()
	11
	OS_Q.C
	Task or ISR

	OS_Q_EN && OS_QUERY_EN
	1. Message queues must be created before they are used.


	OSSchedLock()
	3
	OS_CORE.C
	Task or ISR

	OS_SCHED_LOCK_EN
	1. After calling OSSchedLock(), your application must not make system calls that suspend executio...


	OSSchedUnlock()
	3
	OS_CORE.C
	Task or ISR

	OS_SCHED_LOCK_EN
	1. After calling OSSchedLock(), your application must not make system calls that suspend executio...


	OSSemAccept()
	7
	OS_SEM.C
	Task or ISR

	OS_SEM_EN && OS_SEM_ACCEPT_EN
	1. Semaphores must be created before they are used.


	OSSemCreate()
	7
	OS_SEM.C
	Task or startup code

	OS_SEM_EN
	1. Semaphores must be created before they are used.


	OSSemDel()
	7
	OS_SEM.C
	Task
	OS_SEM_EN and OS_SEM_DEL_EN
	1. You should use this call with care because other tasks might expect the presence of the semaph...
	2. Interrupts are disabled when pended tasks are readied, which means that interrupt latency depe...



	OSSemPend()
	7
	OS_SEM.C
	Task only

	OS_SEM_EN
	1. Semaphores must be created before they are used.


	OSSemPost()
	7
	OS_SEM.C
	Task or ISR

	OS_SEM_EN
	1. Semaphores must be created before they are used.


	OSSemQuery()
	7
	OS_SEM.C
	Task or ISR

	OS_SEM_EN && OS_SEM_QUERY_EN
	1. Semaphores must be created before they are used.


	OSStart()
	3
	OS_CORE.C
	Startup code only
	N/A
	1. OSInit() must be called prior to calling OSStart(). OSStart() should only be called once by yo...



	OSStatInit()
	3
	OS_CORE.C
	Startup code only

	OS_TASK_STAT_EN && OS_TASK_CREATE_EXT_EN

	OSTaskChangePrio()
	4
	OS_TASK.C
	Task only

	OS_TASK_CHANGE_PRIO_EN
	1. The desired priority must not already have been assigned; otherwise, an error code is returned...


	OSTaskCreate()
	4
	OS_TASK.C
	Task or startup code

	OS_TASK_CREATE_EN
	1. The stack for the task must be declared with the OS_STK type.
	2. A task must always invoke one of the services provided by µC/OS-II to wait for time to expire,...
	3. You should not use task priorities 0, 1, 2, 3, OS_LOWEST_PRIO-3, OS_LOWEST_PRIO-2, OS_LOWEST_P...


	OSTaskCreateExt()
	4
	OS_TASK.C
	Task or startup code
	N/A
	1. The stack must be declared with the OS_STK type.
	2. A task must always invoke one of the services provided by µC/OS-II to wait for time to expire,...
	3. You should not use task priorities 0, 1, 2, 3, OS_LOWEST_PRIO-3, OS_LOWEST_PRIO-2, OS_LOWEST_P...



	OSTaskDel()
	4
	OS_TASK.C
	Task only

	OS_TASK_DEL_EN
	1. OSTaskDel() verifies that you are not attempting to delete the µC/OS-II idle task.
	2. You must be careful when you delete a task that owns resources. Instead, consider using OSTask...


	OSTaskDelReq()
	4
	OS_TASK.C
	Task only

	OS_TASK_DEL_EN
	1. OSTaskDelReq() verifies that you are not attempting to delete the µC/OS-II idle task.


	OSTaskQuery()
	4
	OS_TASK.C
	Task or ISR
	N/A
	1. The fields in the task control block depend on the following configuration options (see OS_CFG...



	OSTaskResume()
	4
	OS_TASK.C
	Task only

	OS_TASK_SUSPEND_EN

	OSTaskStkChk()
	4
	OS_TASK.C
	Task code

	OS_TASK_CREATE_EXT
	1. Execution time of this task depends on the size of the task’s stack and is thus nondeterministic.
	2. Your application can determine the total task stack space (in number of bytes) by adding the t...
	3. Technically, this function can be called by an ISR, but because of the possibly long execution...


	OSTaskSuspend()
	4
	OS_TASK.C
	Task only

	OS_TASK_SUSPEND_EN
	1. OSTaskSuspend() and OSTaskResume() must be used in pairs.
	2. A suspended task can only be resumed by OSTaskResume().


	OSTimeDly()
	5
	OS_TIME.C
	Task only
	N/A
	1. Note that calling this function with a value of 0 results in no delay, and the function return...
	2. To ensure that a task delays for the specified number of ticks, you should consider using a de...



	OSTimeDlyHMSM()
	5
	OS_TIME.C
	Task only
	N/A
	1. Note that OSTimeDlyHMSM(0,0,0,0) (i.e., hours, minutes, seconds, milliseconds) results in no d...



	OSTimeDlyResume()
	5
	OS_TIME.C
	Task only
	N/A
	1. Note that you must not call this function to resume a task that is waiting for an event with t...
	2. You cannot resume a task that has called OSTimeDlyHMSM() with a combined time that exceeds 65,...



	OSTimeGet()
	5
	OS_TIME.C
	Task or ISR
	N/A


	OSTimeSet()
	5
	OS_TIME.C
	Task or ISR
	N/A


	OSTimeTick()
	5
	OS_TIME.C
	Task or ISR
	N/A
	1. The execution time of OSTimeTick() is directly proportional to the number of tasks created in ...



	OSVersion()
	3
	OS_CORE.C
	Task or ISR
	N/A
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